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Abstract

As electricity systems transition toward more variable renewable energy, flexi-
ble demand has emerged as a critical tool for grid management. Yet a funda-
mental question remains: are emerging smart technologies sufficient to unlock
demand response, or does human behavior remain the critical barrier? Our
field experiment examines this question through a novel approach that individ-
ually randomizes peak event timing for each participating household, allowing
us to leverage both within-subject and between-subject variation. We com-
pare the response to “peak events” on electricity consumption for households
equipped with three distinct demand response programs: a fully automated sys-
tem requiring no action; app-enabled smart devices requiring minimal effort;
and traditional manual adjustments. The results are striking—households with
passive, automated responses reduced consumption five times more than those
required to take any action at all, even when the burden is greatly reduced
via smart technology. The provision of enabling technologies alone made no
difference in households’ responsiveness, as compared to a fully manual setting,
when active participation was still required. These findings reveal that the
opportunity cost of time and effort—not technology limitations—may be the
fundamental obstacle to unlocking electricity demand flexibility. To achieve its
full potential, “smart home” technologies need to incorporate these behavioral
realities as barriers to responsiveness.
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1 Introduction

“While the electricity system of the past involved forecasting demand and

dispatching supply, going forward grid operators will increasingly find them-

selves forecasting supply and dispatching demand.”

–Jeff Dagle, Pacific Northwest National Laboratory

The energy transition is rapidly changing electricity systems around the world as

supply decarbonizes and new sources of demand are electrified (e.g. heating, trans-

portation). However, the growth of variable renewable generation sources, such as

wind and solar, has raised reliability challenges for power grids, where supply and de-

mand must balance at every instant. These market dynamics highlight the potential

for flexible demand to play a critical role in facilitating the transition to low-carbon

electricity supply by managing an increasingly variable grid. Despite its promise,

questions remain as to how to elicit such flexibility from notoriously inelastic electric-

ity consumers.

One solution, long advocated by economists, is to send dynamic price signals to

reflect the time-varying nature of marginal electricity system costs (Boiteux, 1960;

Kahn, 1970; Joskow and Wolfram, 2012). However, inattention and other barriers

may make such a first-best solution unrealistic (Schneider and Sunstein, 2017). In

addition to the onus of having to gather (and understand) their electricity price and

usage, consumers face an even more fundamental obstacle: The reward for adjusting

consumption may simply not be worth their opportunity cost of time (Becker, 1965).

Many utility demand response programs amount to consumers “picking up pen-

nies” in a series of irregular and relatively low stakes opportunities where consumers

earn rewards, or savings, for reducing consumption during “peak events” (Harding

and Sexton, 2017). Consumers can respond to these events, but to do so requires

allocating time to actively participate and exert effort. Consumers may be under-

standably reluctant to allocate their scarce time when the individual private gains

are small—despite potentially large social gains in the aggregate. This can lead to

low price responsiveness and is reflected in inertia in consumer decisions.1

In this paper, we examine the role of time allocation and associated effort as barri-

ers to flexible residential electricity demand. In particular, we investigate the role that

1Other examples where the opportunity cost of time or “hassle costs” act as a barrier to respon-
siveness include monthly subscription renewals (Einav et al., Forthcoming) and health insurance
enrollment (Shepard and Wagner, 2025).
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emerging technologies and active versus passive response requirements can play in re-

ducing these barriers. Partnering with a large electric utility in Canada, we recruited

approximately 1,000 households to a demand response experiment that lasted 17

months. Participants received individually randomized notifications of “peak events”,

roughly 3 to 4 per month, whereby they received financial rewards for reducing elec-

tricity consumption during the 3-hour window of each event.

Participants were assigned to one of the three demand response programs that

differed in the provision of enabling technology and whether active versus passive

responses to events were required. Households in the most basic Manual program

received information on their real-time consumption as well as notifications of peak

events via the Utility’s App and had to actively respond by manually adjusting their

consumption, as the name suggests. Households in the Tech program received

the same information but also had app-enabled load controllers installed on their

baseboard thermostats, hot water heaters, and electric vehicle (EV) chargers, allowing

them to actively respond to events remotely via pushing a button in an App. Finally,

households in the Central program had the same information provision and load

control technology installed, but with the key difference that the Utility automatically

reduced their consumption in response to an event, i.e. their response was passive.

Households could override the automatic reductions, but, in contrast to the Tech

program, they needed to actively make an effort to not reduce consumption by pushing

a button on their App.

The Tech and Manual programs constitute what we term decentralized demand

response in that households in these programs need to actively respond to a peak

event notification by taking an action. In the case of the Tech program, the household

could simply adjust connected devices via the push of a button in an app, easing the

burden of effort but still requiring an active action. Households in the Central program

constitute our centralized demand response, in that that their response was utility-

controlled.2 Even if they exert no effort, or pay no attention to the event, households

in this program will have their consumption reduced and can earn rewards.

Our treatment of interest is the effect of peak events and, importantly, how that

differs across participants in different programs. Accordingly, we randomize our treat-

ment events, i.e. peak event notifications, at the level of household-day. That is, each

participant receives a unique randomized schedule of peak events over the 17-month

2There are a number of recently developed programs that include utility-managed load-control
for various appliances including hot water heaters (Wattersaver, 2023), thermostats (PG&E, 2023),
electric vehicles (DTE Energy, 2022), and solar-plus-storage systems (Spector, 2020).
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period of the study.3 This granularity of randomization differs from typical “between-

subject” designs, where randomization occurs at the level of group allocation, with

participants subsequently receiving common treatments. Our design incorporates

what is often called a “panel experiment” or “within-subject” design (Charness et

al., 2012; Bojinov et al., 2021; List, 2025). Within-subject designs are far less com-

mon than between-subject designs, in part because of the complexity involved in

implementing an experiment with personalized randomization.

There are several benefits of leveraging within-subject identification. First, we are

able to directly estimate the average treatment effect from peak events, separately

by program, for the population of households that accepted the demand response

program offers—a group that is of interest to utility planners. Since our interest is in

the effect of randomized peak events, we can directly estimate this effect due to 100%

compliance of receipt of treatment events, i.e. peak event notifications, by participants

in the study. Second, the variation provided by the individualized randomization

schedules increases the statistical power of our estimates. Third, the within-subject

design allows us to estimate household-specific treatment effects, providing estimates

for the full distribution of responses to peak events for each demand response program.

We analyze these household-level estimates to better understand the mechanisms

driving our results.

Our results provide three key insights. First, we find that people do respond to

financial incentives, but time allocation/effort is a major barrier to responsiveness.

Using both within- and between-subject variation, we find participants in the Central

program reduced consumption, on average, by 26.3% during events, as compared to

4.8% and 5.3% in the decentralized Tech and Manual programs, respectively. Having

to take an action to reduce consumption, even one as small as pushing a button on

an app to respond to an event, results in one-fifth of the effect. Second, technology

alone is not sufficient. Simply providing consumers with smart home technology to

monitor and control their energy use is insufficient to drive significant behavioral

change. The Tech program, despite offering remote control capabilities, performed

similarly to the Manual program, highlighting that technology adoption alone does not

guarantee success. Third, the magnitude of the Central program’s response reinforces

the considerable potential of demand flexibility as a resource for electricity grids. The

results make a strong case for the value of centralized/automated demand response.

3The schedule is blind to the participant prior to the notification that occurs 21 and 2 hours
preceding an event.
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We find the distributions of household treatment effects, estimated solely based

on within-subject variation, differ significantly across the programs. Participants

in the Central program are normally distributed around a mean reduction of 24%.

Whereas, those in the Tech and Manual programs have mean average reductions of

approximately 5%, consisting of a large mass around 0% and a small subset of high

performers. Our within-subject design also allows us to examine the consistency of

individual household treatment effects by exploring the variance of responsiveness

across events within each household. We find that the standard errors are similar

across the three programs, with slightly smaller average values for the Central pro-

gram. This suggests that households’ responses to events are broadly consistent. That

is, the Central program households are consistently large responders, while the Tech

and Manual households are in large part consistently low responders. This finding

has important policy implications as the Central program can be viewed as a reliable

source of demand-side flexibility.

We explore potential mechanisms driving our results by combining the household

estimated treatment effects with detailed data on participants’ interactions with the

utility’s App. We provide evidence that differences in performance are driven by

differences in time allocation and attention. We find that when households do not in-

teract with their App on peak event days, the average household-level treatment effect

is roughly 3% for the Tech and Manual programs and 24% for the Central program.

When households do interact with their App, the reductions increase to 8.5% for the

Tech and Manual programs, and 27% for the Central program. These results em-

phasize that while all programs increased responsiveness when households interacted

with the App, the Central program’s “headstart” from removing its requirement to

have to take an action to respond is associated with the largest effects.

The App interaction data provides further insights into the intensity to which

households allocated time to monitor and provide demand flexibility and how this

correlates to their performance in responding to peak events. We find that the small

subsample of “high achievers” in the Tech and Manual programs interacted with

their App very frequently (61% and 51% of days on average), which suggests that

their performance relied on considerable time devoted to their electricity consumption

decisions and effort in reducing it during events. In contrast, the high achievers in the

Central program interacted with the App significantly less (31% of days on average).

We also investigate how price affects the degree of responsiveness by randomizing

peak event incentives into regular and “high” reward events, where the rewards for
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consumption reductions are roughly double in the latter. We find no significant

evidence that higher prices motivate greater consumption reductions.4 This further

suggests a story of responsiveness where time allocation/effort acts as the key barrier,

rather than a smooth response to price signals.

Finally, we use data from an exit survey to understand the relationship between

our estimated household-level treatment effects and measures of an individual’s op-

portunity cost of time. This analysis provides further support for our key identified

barrier to demand response. Households with lower income and/or a higher perceived

personal net benefit for providing demand flexibility were associated with larger re-

sponses to peak events. The Central demand response program is able to overcome

these time allocation-related barriers through the use of enabling technologies and

utility-controlled/automated responses to events.

Our paper builds on several strands of the literature. First, we add to the rich

set of empirical research estimating household responsiveness to time-varying pricing

in electricity.5 Our experiment is most similar to the critical peak pricing (CPP)

strand of this literature. The results from our Manual program with no load con-

trol/automation technology are broadly in line with those observed in prior studies.

Second, our paper contributes to a growing literature that explores automation

options for consumers to overcome barriers to demand response. There is evidence

that automation of smart thermostats and electric vehicles (EVs) can assist in facil-

itating short-run demand responsiveness when combined with pricing (Harding and

Lamarche, 2016; Bollinger and Hartmann, 2020; Burkhardt et al., 2023; Blonz et al.,

2025; Bailey et al., 2025). Our work builds on this work by providing a detailed

decomposition of the role of prices, technology, and time/effort barriers, leveraging

automation in a broader range of smart home technologies. In particular, we are

able to uniquely look at the relative impact of automation compared to a program

that has the exact same technology provided without automation; previous estimates

may conflate the impact of automation with automation-providing technology. Re-

cent work finds that consumers may override important settings with such technology,

reducing the anticipated benefits (Brandon et al., 2022). Consistent with the latter,

we find our Tech program performs no better than the Manual program on average.

4This finding is similar to that of Prest (2020) who estimates the price-responsiveness of house-
holds facing time-of-use prices in Ireland (without automated technologies) and find that households
are responsive to TOU price signals, but the magnitude of the price does not matter.

5See Faruqui and Sergici (2010), Harding and Sexton (2017), and Yan et al. (2018) for surveys
of this literature.
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That is, given the ability to remotely control large appliances as well as automate

some aspects of their electricity usage (e.g. thermostat settings), they fare no better

than consumers who require a more manual action. The key takeaway here is that

in order to achieve its full potential, technology needs to incorporate the behavioral

realities of the opportunity costs of time and effort as a barrier to responsiveness.

Third, our paper relates to existing work on default effects that consider a range

of settings, including retirement savings (Chetty et al., 2014; Bernheim et al., 2015),

organ donations (Abadie and Gay, 2006), and retail electricity plans (Fowlie et al.,

2021). Broadly speaking, this literature shows that default effects can significantly

impact outcomes. The work most closely related to ours is Fowlie et al. (2021) who

look at opt-in vs opt-out default effects at the extensive margin of selecting time-

varying retail electricity pricing plans. Our paper complements this work by focusing

on default effects at the intensive margin reflecting the decision to alter consumption

decisions in response to financial incentives. Our key contribution beyond the exist-

ing literature is the finding of significantly greater responsiveness when consumption

reductions are made the default, or passive, action in response to demand response

events. Requiring customers to take action—even with the provision of technology

that makes the associated cost as minimal as remote control with a mobile phone

app—is no match for the power of demand response that is managed on the con-

sumer’s behalf. This speaks to the importance of recognizing the opportunity cost of

time/cost of effort in settings where inattention is high and individual event rewards

are relatively small, despite potentially large social gains in aggregate.

Our analysis proceeds as follows. In Section 2, we begin by presenting a conceptual

framework for how time/effort cost can inhibit responsiveness based on Becker (1965).

Section 3 describes our experimental design and data. We start the analysis with a

descriptive analysis in Section 4. This is followed by our formal estimation framework

in Section 5 and estimation results in Section 6. Section 7 presents empirical evidence

to understand the mechanisms behind our results. Section 8 concludes.

2 Conceptual Framework

This section describes a model to serve as a conceptual framework for our field exper-

iment. The model is motivated by Becker’s (1965) model of household production,

where a household allocates time and/or purchases market goods to produce goods

and services according to a household production function. In our setting, this in-
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cludes allocating time to provide electricity demand flexibility. In our field experi-

ment, we provided households with the production technology they can use to provide

demand flexibility. This model illustrates how the properties of the production tech-

nology can impact the household’s provision of demand flexibility.

The household consumes three goods and services (Z1, Z2, Z3) and earns utility

U(Z1, Z2, Z3).
6 Z1 is a composite good representing all non-energy household goods

and services, Z2 is energy services, and Z3 is energy flexibility. The utility from energy

services arises from the use of electricity for heating and cooling, powering lights,

etc. Energy flexibility provides utility to the household through the “warm glow” of

providing flexible electricity demand and other non-pecuniary benefits. By modeling

these as two separate services, energy flexibility aims to capture the household’s ability

to shift consumption inter-temporally in the short run, rather than an aggregate

change in the total electricity used. The household receives a financial payment for

providing energy flexibility, denoted by ρ ≥ 0.

The household’s decision problem is represented by the following:

max
Z,t,X

U(Z1, Z2, Z3)

subject to Zi = fi(Xi, ti|R) for i = 1, 2; (1)

Z3 = f3(t3|R); (2)

3∑
i=1

ti + tw = T ; (3)

p1X1 + p2X2 = tw ω + ρZ3. (4)

For goods i = 1, 2, the production function for good Zi depends on the input

market good Xi, which comes at a price pi, and time used in household production,

ti. Market goods do not yield utility directly, but rather serve as an input to the

final household goods. For energy services (Z2), the market good X2 can reflect the

input electricity, for example. For demand flexibility (Z3), the production technology

depends on the amount of time t3 the household allocates to providing this service.

This could represent, for example, the amount of time spent turning off devices during

an event and/or learning how to use technology to provide flexibility. We assume that

there is no choice of the market input for demand flexibility (i.e., there is no choice

of X3). We are taking the set of technologies used to facilitate demand flexibility as

6We assume that the utility function is continuous, differentiable, and strictly quasi-concave.
Appendix A provides derivations and illustrates the model results using Cobb-Douglas utility.
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fixed. The household is randomly assigned to the Manual, Tech, or Central demand

response programs and provided different energy flexibility enabling technologies. We

parameterize these technologies by R in their production functions.7

We follow Becker (1965) and assume the following production functions:8

Xi = ai(R)Zi for i = 1, 2 and ti = bi(R)Zi for i = 1, 2, 3. (5)

This production technology implies that for each unit of Zi, it takes ai(R) market

goods and bi(R) units of time for i = 1, 2. For energy flexibility, an increase in b3(R)

means the household needs to allocate more time to produce the same level of energy

flexibility. In the context of our experiment, all households in demand response pro-

grams are allocated an App to monitor consumption. A subset of these households

receive technology that can either be actively controlled (i.e., Tech) or passively con-

trolled (i.e., Central) by the household to respond to events. This illustrative model

considers a single representative household, but with (randomly) provided household

energy technologies that impact the household’s choice of demand flexibility via its

impact on b3(R).

The household has a finite amount of time it can allocate, T . In addition to

allocating time to producing household goods and services, the household can spend

time tw working and earning a wage of ω. The time constraint is represented by

equation (3). Finally, the household faces the budget constraint in equation (4) that

depends on the amount spent on market goods, the amount earned from working,

and compensation for providing demand flexibility. Facing these two constraints,

the household has a finite amount of time and financial resources it can allocate to

producing goods and services, and it faces an opportunity cost of time as it foregoes

the opportunity to earn income.

In this framework, the household’s decision problem can be rewritten as a standard

7In our experiment, households could install flexible energy technologies (e.g., smart thermostats)
themselves. However, we observe minimal adoption of such technologies that can be linked to the
Utility’s App to observe and adjust device-specific consumption. The model could be expanded to
include the choice of X3 on top of the randomly allocated technology set parameterized by R. The
key qualitative conclusions, summarized below, will persist with additional notational complexity.

8The results of this model hold under more general production technology assumptions (e.g.,
allowing time and market goods to be substitutes, multiple market goods for each final household
product). Pollak and Wachter (1975) show that if the production technology has constant returns to
scale and there is no joint production, then the cost of providing a household good does not depend
on the level of the household good or service. This property is leveraged below to collapse the model
down to a standard utility-maximization problem.
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utility maximization problem:

max
Z

U(Z1, Z2, Z3)

subject to
3∑

i=1

πi(p, ω, ρ|R)Zi = T ω for i = 1, 2, 3; (6)

where πi represents the traditional role of price for household good Zi and is defined

as follows:

πi( · ) = pi ai(R) + ω bi(R) for i = 1, 2, and

π3( · ) = ω b3(R)− ρ. (7)

The solution is achieved by equating the marginal rate of substitution with the

price ratio of any two household goods. Consequently, a decrease in the price of Z3 (π3)

increases the provision of demand flexibility. The household only has a finite amount

of time. A reduction in b3(R), through an improved demand-flexibility inducing

production technology, effectively reduces the price of providing demand flexibility.

Alternatively, if the wage rate ω increases, the household’s opportunity cost of time

increases, raising the price of providing demand flexibility.

In the context of our experiment, this illustrative modeling framework emphasizes

that the flexibility-enabling technology has the potential to impact the provision of

demand flexibility by reducing the cost of providing this service, given the presence

of the household’s time and budget constraints. The model does not take a stand

on the precise impact of each technology in our experiment as this is an empirical

question that will be explored and discussed in detail below. Rather, it illustrates the

mechanism through which technology has the potential to increase demand flexibility

through the household’s rational (utility-maximizing) decisions.

3 Experimental Design and Data

3.1 Overview

We partnered with a large Canadian electric utility (hereafter referred to as the “Util-

ity”) to create three demand response programs that vary in terms of the enabling

technology provided to customers, as well as household versus utility-initiated electric-

ity demand changes on specific devices. We are primarily interested in how customers

in each program adjust their electricity consumption in response to “peak events”,
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times during which the Utility asks consumers to reduce consumption and rewards

them financially for doing so.

A unique feature of our study is the fact that we randomized the timing of peak

events at the household level. We leverage the randomization of these events (as well

as the richness of our data) to estimate household-specific treatment effects. These

features allow us to look at the distribution of effects within each program to better

understand what is driving average program-specific results.

3.2 Treatment Events

Customers in each of the demand response programs received notifications of peak

events through an electricity consumption management phone App offered by the

Utility. Peak events had the possibility of occurring at one of two time periods:

morning (7am to 10am) or evening (5pm to 8pm). The schedule and timing (morn-

ing or evening) of events were unknown ex-ante to the customer, each receiving a

unique, randomized schedule of events over the course of the experiment. Conse-

quently, households could not predict the day or event time when they would receive

a peak event. Households received event notifications 21 and 2 hours before the event

that included an offer for households to receive financial rewards for reducing elec-

tricity consumption during the peak event period, relative to their household-specific

baseline.9 Further, because events were randomized in time for each household, they

are not correlated with other drivers of household electricity consumption.

“Event types” were also randomized and were one of two pricing levels, “normal”

and “high”, with rewards increasing in the latter for large reductions. High peak

events were only possible during evening periods. During normal events, households

could receive $1 for a 10% reduction, $2 for a 30% reduction, or $3 for a 50% reduction.

During high peak events, households could receive $1 for 10%, $3 for 30%, or $6 for

50% reductions.10 By randomizing the pricing levels, we are able to estimate the

effect of greater price incentives on household consumption behavior. The incentive

amounts translate to payments ranging from approximately $1.11 to $2.22 per kWh

9Baselines were calculated based on a household’s average consumption during the relevant event
time window over the last five weekdays prior to the event, excluding days where events occurred.
Customers did not know how the baseline was calculated to avoid the potential for customers to
“game” their baseline 21 hours was selected as the longest notification period to avoid consumers
having knowledge of a pending event while their baseline was still being set.

10Report dollars are in Canadian dollars. CAD$1 equals approximately USD$0.75 or EURe0.68
as of December 2023.
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of electricity reduced, for the average household.11 These incentives are in the range

of wholesale price caps that are used to limit electricity scarcity pricing in a number

of jurisdictions in North America.12

Events randomly occurred on weekdays, excluding holidays. Households typically

experienced two “normal” and one “high” event per month. This schedule was altered

in the summer months of July and August when the likelihood of peak events is lower

in Canada. During these months, households experienced no “high peak” events.

Events started on February 22, 2022, and continued until June 30, 2023 resulting in

30,502 household-event days in our experiment.

Event notifications provided information on the time of the event and the financial

incentives for the different demand reduction levels. Once consumers received the 21-

hour notifications, they could also see event details in the App itself. See Appendix

C.1 for examples of the notification and in-App event messages. Households’ rewards

for consumption reductions during events were displayed in the App at a two- to

three-day lag. The App also gave households a summary of their total rewards to

date. See Appendix C.2 for details on each program’s in-App experience.

3.3 Demand Response Programs

Our initial sample consists of all households that first downloaded a utility-facilitated

App. The App provides individuals with household-level hourly consumption posted

at a one-day lag. From the pool of approximately 9,000 households that joined the

App, we identified 1,661 eligible households based on factors such as being located

near a major metropolitan city and household characteristics.13 Eligible households

were randomized into one of three demand response programs or two never-treated

groups. Email invitations were sent to eligible households randomized into the de-

mand response programs, with several reminders. See Appendix B.1 for a complete

11The average household consumes 1.8 kWh in each hour in our sample. A 10%, 30%, and 50%
reduction translates to a 0.54, 1.62, and 2.7 kWh reduction over the three-hour event, respectively.
Consequently, for a 50% reduction during a normal peak event, we compensated households $3

2.7 =

$1.11 per kWh. For a 50% reduction during a high peak event, compensation was $6
2.7 = $2.22 per

kWh. The other percent reductions lie between these two cases.
12Examples include the wholesale price cap of CAD$1.00/kWh in Alberta (Brown and Olmstead,

2017), USD$3.50/kWh in the Mid Continent Independent System Operator that operates in the
Midwest United States (IRC, 2017), and USD$5/kWh in Texas (Smith, 2022).

13Eligible households were those that were in or near a major metropolitan city for which it
was feasible for utility-partnered electricians to install load control equipment; homeowners; not
in condos or apartments; had at least one month of historical electricity consumption data as of
September 2021; and had at least one controllable electrical device (level 2 electric vehicle charger,
electric baseboard heater as the primary heat source, and/or an electric hot water tank).
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description of the recruitment and assignment process.

Table 1. Summary of Household Programs

Programs DR Control Load
Controller

Price Incentive Real-Time
Usage Info

Central Utility ✓ ✓ ✓
Tech Household ✓ ✓ ✓
Manual Household ✓ ✓
Info Household ✓
Control Household

Notes. DR Control represents whether demand response to events is controlled
entirely by the household (decentralized) or by the Utility for the load-controlled
devices (centralized). Load Controller denotes whether the household has load
controller equipment installed. Price Incentive reflects if households receive peak
events and rewards for reduced demand during events. Real-Time Usage Info de-
notes whether households receive real-time household-level consumption informa-
tion. ✓indicates categories that are applicable to each program.

Table 1 summarizes our demand response programs and never-treated groups.

Households in the Manual program earned financial rewards for demand reductions

during events but did not have any load controller equipment installed by the Utility

to manage their consumption via the App. They had to respond to events manually.14

Households were sent a device that allowed them to monitor their real-time electricity

usage information in the Utility’s App.

The Tech program differs from the Manual program in that the Utility installed

load controller equipment on one or more of the household’s electric hot water heaters,

baseboard thermostats, and level 2 EV chargers, to enable remote electricity consump-

tion (“load”) reductions. This equipment allows households to see device-specific

electricity consumption and turn on and off devices remotely via the App. Critically,

while the Tech program is equipped with load control technology to ease their effort

in responding to events, they still must take active action to do so via their phone’s

App. See Appendix C.2 for detail on the experience that participants had with the

App, by program. Both the Manual and Tech programs allow us to test the efficacy

of a decentralized approach to demand response—one without and one with enabling

smart technology, respectively.

14We can observe if a household independently installs its own equipment and links it to the
Utility’s App. Only 3 (out of 242) Manual households installed equipment independently. These
3 all installed smart thermostats that allow the monitoring and remote control of the household’s
electric baseboard heaters.

12



The Central program received the same equipment installed in their homes as

the Tech program. However, during an event, the passive setting for Central program

participants was for the Utility to manage their load-controlled devices by reducing

electricity consumption. That is, without any active response, the Central program

participants would reduce consumption via demand management initiated by the

Utility. For example, during events, their thermostat temperature is automatically

reduced, EV charging is delayed, and/or the water heater is turned off. Central

program households needed to actively choose not to respond to an event (i.e., select

out of utility management) by pushing a button on their App. The Central program

allows us to examine the efficacy of centralized demand management and, as compared

to the Tech program, the difference between having to take active action during

an event versus passively responding by conceding control to a third party.15 It

is important to note that the Central, Manual, and Tech programs had symmetric

information about their real-time usage which could be observed within the App.

Finally, we have two groups of households that serve as never-treated baselines

throughout the study. One is a Control group that receives no intervention or

messaging regarding the experiment after joining the utility’s App. Another is an

Info group that is identical to the Control group, but these households have access to

real-time consumption information for their home via the App after they accepted and

installed a device provided by the Utility. Both of these never-treated groups do not

receive peak events or financial incentives. We passively monitor their consumption.

While households outside of the Control group needed to accept being in each

program, the final sample of participating households are representative of those that

utility companies are interested in until such time that demand response programs

serve as the default.

3.4 Acceptance

Table 2 summarizes the number of households invited and the acceptance rates for

each program offer. Acceptance rates among all programs were high. In particular,

the acceptance rate for the Central offer was 42%, and only marginally statistically

different than the acceptance rate for the Tech offer (48%). A difference in means test

15Customers in the Central program received advanced notifications of events just as other program
participants, and the language of the notifications reminded them that the Utility would manage
their devices. See Appendix C.1 for event notifications for each program. They had the option to
opt-out of utility management for all devices ahead of an event or for individual devices during an
event. These options are described in Appendix C.2.
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between these two values yielded a p-value of 0.072. Compared to Tech and Central,

the Manual program had a statistically significantly higher acceptance rate of 59%,

followed by the Info-only group at 68%.16 Finally, Control had 100% acceptance

because their participation was not subject to an offer. The acceptance rates of the

Central and Tech programs were lower than the others due in part to the need for

load controllers to be successfully installed in households that accepted these offers.17

Table 2. Program Acceptance by Program

Central Tech Manual Info Control
Invited 423 382 409 259 188
Accepted 177 184 242 177 188

Pct. Accepted (42%) (48%) (59%) (68%) (100%)

Notes. “Invited” reflects the number of households invited to participate
in the experiment, by program. “Accepted” is the number of households
that accepted our offer and made it through the equipment installation
process (as applicable, by program). “Pct. Accepted” displays accep-
tance rates relative to the number of households invited.

We take the similarity among final acceptance rates between the Central and Tech

programs as the first set of evidence that we can compare our estimated treatment

effects between these programs. While the Manual program had a higher final accep-

tance rate, concerns that the Manual program participants systematically differ from

those of the other two programs are mitigated based on a comparison of observable

characteristics across programs in our final sample, as are concerns about differences

in the composition of households invited to each program. See Appendices B.2 and

B.3 for a detailed discussion of balance using pre-treatment data.

Figure 1 provides a summary of our experimental design, starting with our initial

recruitment and eligible participant pools, and subsequent allocation and acceptance

into our demand response programs and never-treated groups. The dots represent

each day of our sample, with shaded dots capturing the randomly allocated peak

events that can occur on different days across individuals. We leverage this within

individual randomization in our identification strategy outlined in Section 5 to identify

the average treatment effect of peak events on the population of households that

16Like the Manual program, the info group required actively accepting the offer to join the ex-
periment and installing a device (called the “Hub”) that facilitates the monitoring and reporting of
real-time consumption.

17We observed unsuccessful installation at households that initially accepted these offers due to,
for example, households never responding to subsequent inquiries to receive and install equipment
or households not being in compliance with local electrical codes.
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accepted participation in our demand response programs. We evaluate if responses

vary by peak event type (i.e., morning, normal evening, high evening) by program.

Figure 1. Experimental Design Summary

Potential recruitment pool (n=9020)

Eligible participant pool (n=1661)

Central
n=177

Tech
n=184

Manual
n=242

Info
n=177

Control
n=188

Never-treated

423 382 259 188

Signifies randomized household treatment event (“peak event”)

Non-event day

409

Event timing: Morning (7-10 am) Evening (5-8 pm)

Event type: Normal High

Notes: Dots represent individual household-days. Treatment events are indicated by filled dots,
which are randomized at the household level, i.e. running vertically in this diagram. Dashed
contours on treatment events indicate morning events, solid contours indicate evening events. Grey
fill indicates “normal” event types and darker fill indicates “high type” (i.e. larger incentive) events.

3.5 Data Description

For all households in our experiment, we track hourly household-level consumption

(in kWh) from October 1, 2020 until June 30, 2023. We also have information on

a number of household characteristics, such as household appliances, that were pro-

vided through survey responses as a necessary condition to enter the first phase of

our recruitment process. In addition, the Utility provided supplementary household

information, including the type of household (e.g., single-family/duplex, row home)
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and an approximate geographical location. We are also provided time-stamped infor-

mation on household interactions with the Utility’s App at the daily level.

We complement the detailed household-level data with demographic information

from the 2016 Canadian Census (Statistics Canada, 2021). We are provided a house-

hold’s Census Dissemination Area (CDA) identifier; the CDA is the most granular

geographical unit for which all Census information is provided publicly. We collect

hourly weather information to control for environmental factors that impact elec-

tricity consumption, including temperature and humidity at three stations that are

geographically representative of the households located in our study.18 These data

were accessed at Environment and Climate Change Canada.

In the last month of the experiment (mid-June 2023), we conducted an addi-

tional survey that contained questions on participants’ experience with their respec-

tive demand response program. We provide a subset of questions from the survey in

Appendix E.1. We use these survey responses in our analysis in Section 7.

4 Descriptive Results

We begin our analysis with descriptive evidence that participating households reduce

their electricity consumption during peak events and show how this response differs

across demand response programs. Figure 2 provides average hourly household-level

consumption for the Central, Tech, and Manual programs for the entire sample period

during non-event (solid lines) and event (dashed lines) days. The shaded regions

reflect the relevant event hours for each event type.

Figure 2a demonstrates that the Central program had a large reduction in average

consumption during events regardless of the event type. After each event, we observe

a large spike in consumption. This “snap-back” is consistent with the devices turning

on immediately after the event (e.g., to reheat the water tank and/or home, or restart

EV charging).19 Comparing High Evening to Evening event consumption, we see no

discernible difference in response to this higher reward.

Figures 2b and 2c demonstrate that the Tech and Manual programs show negligible

18We match the households in our sample with their closest weather station.
19Because we are interested in event-induced demand flexibility among programs, not energy

efficiency, we are unconcerned with demand being shifted to another time. However, based on con-
versations with the Utility, the new problematic peaks in demand created by the observed snap-back
could be mitigated by the Utility staggering the beginning and/or end of the load-controlled event
across households or only partially adjusting the demand levels on controllable devices. Managing
the “snap-back” or “shadow peak” from demand response is an important area for further research.
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Figure 2. Average Household Consumption
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Notes: Figure plots mean household consumption by hour and demand response program on week-
days, on event days and non-event days over the period February 1, 2022 - June 30, 2023. Event
days are separated by type: Morning, Evening, and High-Evening. The shaded area represents the
relevant 3-hour event period.
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changes in consumption patterns during events. This limited observable response for

the Tech program arises despite the fact that this program has access to the same

equipment as the Central households. However, unlike the Central program where

changes are automated, the Tech households must actively engage with the App or

device to turn off the same appliances during an event.

Taken together, these descriptive results suggest that the Central program has a

considerably larger response to each event type. Further, we see no visual evidence

of greater performance for greater financial rewards. Rather, the largest difference

appears to be whether the household is in a passive (centralized) versus active (de-

centralized) program. In the sections that follow, we undertake a formal empirical

analysis to quantify these effects and control for potentially confounding factors.

5 Empirical Framework

5.1 Program-Level Regressions

We estimate the average treatment effect of peak events by comparing electricity

consumption for households facing a randomized peak event to those who, contem-

poraneously, are not, using the following model at the household i and hour t level:

ln(cit) =
∑

j∈{C,T,M}

βj Programji · Eit + αi + τt + δXit + εit (8)

in which ln(cit) is the log of household electricity consumption, Eit is the household-

specific event indicator that equals one if the household is (randomly) assigned an

event in hour t, and Programji is a categorical variable for which demand response

program the household i is enrolled in (e.g., Central [C], Tech [T], or Manual [M]).

A key advantage of this model is that it allows us to readily test for differences in

responsiveness to events across the three demand response programs. We use the

log of household electricity consumption on the left-hand side to account for the

right-skewed nature of consumption.20

We include αi, household fixed effects, which control for time-invariant household

characteristics. We also include τt, an hour-of-sample fixed effect, which controls for

time-varying factors that impact consumption. Household electricity consumption

and consumer responses to events may vary with local weather conditions (especially

20Our results are robust to functional form; we observe similar results with a linear-linear specifi-
cation.
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due to thermostat settings). To control for this, we include Xt, a vector of hourly

weather controls that include the relative humidity and cooling degrees and heating

degrees above and below 65◦ F (18.33◦ C). Since these may vary in weather conditions

in a nonlinear way, we include a flexible functional form with a polynomial up to the

third degree for each weather-related covariate. εit is the error term. We cluster

standard errors at the household level.

We also consider a version of this regression specification where the event indicator

variable, Eit, is adjusted to be a categorical variable for the three potential event-

types: Morning, Evening, and High-Evening. This analysis allows us to evaluate

if households’ responses to events differ by time-of-day and the financial reward for

responding, in the case of Evening compared to High Evening events.

Our parameters of interest are βj for j ∈ {C, T,M}, which measure the change in

household-level electricity consumption during peak events for each of the Central,

Tech, and Manual demand response programs. Because of our log-linear specification,

we transform our estimates to report the percentage change in hourly consumption

during an event via 100× (exp(β̂j)− 1).

Our empirical framework relies on three identifying assumptions to recover the

effect of events on household-level consumption. First, events are not correlated with

other drivers of household electricity consumption. This is met via our randomization

of events. We include weather controls to ensure that our estimated treatment effects

can be interpreted as weather-agnostic.

Second, our analysis falls within the literature on experiments that leverage “within-

subject” variation, which have been referred to as “panel experiment” designs (Char-

ness et al., 2012; Bojinov et al., 2021; List, 2025). Panel experiments involve the

treatment of interest (e.g., peak events) that vary in time. This differs from designs

that use a one-time treatment and between-subject variation to identify treatment

effects. A key identification assumption needed for estimating event-level treatment

effects in the presence of within-subject variation is that our random treatment events

do not “carryover” to a persistent change in behavior in similar hours on non-event

days. This could occur if, for example, experiencing an event led to a household

persistently scheduling consumption reductions during the event hours on all days

going forward. Or, conversely, a savvy participant might suspect a financial benefit

of “gaming” the baseline by purposely increasing consumption during event hours on

non-event days.21 We test the validity of the “no carryover” assumption using a DID

21We mitigated this latter effect by providing no information on how the baseline consumption
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regression to evaluate whether households in each demand response program adjusted

their consumption during the event windows on non-event days in the post-treatment

period, relative to the never-treated households. Details of the empirical approach

are provided in Appendix D.2.

Third, as noted above, for each program, Equation (8) compares event time con-

sumption to non-event time consumption of households in the same demand response

program, other demand response programs, and never-treated households. This relies

on the assumption that the households in the never-treated groups and other demand

response programs provide a valid counterfactual on non-event days. While observed

characteristics are similar across the demand response programs (see Appendix B.3),

one may be concerned that the programs are differentially selected, and this impacts

our ability to compare event-time to non-event-time behavior across programs, even

after including our various control variables.

To address this potential concern of between program comparison validity, we per-

form a robustness check whereby we vary the set of comparators. We start with the

most restrictive set: limiting the analysis to be solely within each demand response

program and excluding the never-treated households. This restrictive specification

ensures we are only comparing behavior across participating households within the

same program and guards against concerns of comparing consumption between partic-

ipating and never-treated households. We run three separate regressions, one for each

program, to separately estimate βC , βT , and βM . The treatment effect is identified

within each program by comparing consumption when households receive peak events

versus not. Next, we augment the comparison group to include never-treated house-

holds, i.e. those in the Control and Info groups, as non-treated comparators, but again

run three separate regressions to estimate treatment effects for each demand response

program separately. Finally, we pool all participants and never-treated households to

run a regression comparing those receiving a peak event to all households not receiving

a peak event at the same time (i.e., Equation (8)).To the extent that our results are

robust to these alternative specifications, this will alleviate concerns that potential

differential selection into demand response programs impacts our key conclusions.

Our empirical framework provides estimated average treatment effects to peak

events by program for households that accepted the demand response program offers.

In our setting, the treatment of interest is randomized household-specific peak events

that all households in demand response programs received. As a result, there was no

that was used to determine the household’s rewards was calculated.
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non-compliance to our treatment of interest. One might consider estimating an Intent-

to-Treat (ITT) and a Local Average Treatment effect (LATE) measure for the impact

of program participation on event-time consumption (i.e., including households that

did not accept the invitation to participate). However, households that did not join a

demand response program did not subsequently receive the (randomized) peak events.

Because of this, non-participating households will have (noisy) null event responses.

In this setting, an ITT approach yields an estimate for each demand response program

that is approximately equal to our main estimated event treatment effects multiplied

by the share of households that joined the program.22

5.2 Household-Level Regressions

A unique feature of our setting is our ability to estimate household-level treatment

effects solely from within-subject variation by leveraging the randomized event tim-

ing. This allows us to examine heterogeneity and distribution of event responsiveness

across households, and to explore factors associated with household-level responsive-

ness that speak to the role of attention and effort/time allocated to responding to

events.

Separately for each household i in the demand response programs, we estimate a

household-specific treatment effect using the following model:

ln(cit) = γi + βi Eit + Tt + δiXit + ηit (9)

where, analogous to above, cit is consumption, Eit equals 1 when household i has an

event and zero otherwise, and Xt includes the same set of temperature controls as the

specification in Equation (8). In this specification, Tt is a set of time fixed effects that

includes day-of-week, hour-of-day, and year-month to capture time-varying factors

that impact consumption.23 ηit is the heteroskedastic-robust error term.

The regression in Equation (9) estimates a separate β̂i for each household in our

22We carried out an analysis to verify these statements by randomly assigning “synthetic events”
to households that did not join our demand response programs. Further, because under plausible
conditions, the LATE equals the ITT divided by the share of compliers, we find that a LATE-like
estimate equals a noisy estimate of our main demand response program-specific treatment effects.
Details are available upon request.

23We cannot include an hour-of-sample fixed effect in the household-level regression because it
would absorb the variation we are using for identification in this specification. We include several
calendar fixed effects to absorb seasonal, day-of-week, and hour-of-day factors that impact consump-
tion. We estimated our program-level specification detailed in Equation (8) using this set of fixed
effects. The results closely reflect the estimates reported below.
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demand response programs. The identification strategy of this household-level regres-

sion compares consumption behavior during event hours to non-event hours within

the same household, conditional on time-based fixed effects and weather variables.

Similar to the approach in our program-level estimation, we also consider a specifica-

tion that allows for differential responses by event type.

The ability to estimate household-level treatment effects provides us with the op-

portunity to understand the potential mechanisms driving our results. In particular,

we have data on when a household has interacted with the App on a given day. App

interactions are indicative of the time and attention that households expended to

respond to events.24 We leverage this to estimate separate event treatment effects,

by household, for when households do and do not interact with the App.

We run a specification of Equation (9) that interacts Eit with an indicator variable

App Interactit that equals one if the household has interacted with the Utility’s App

on the relevant day and zero otherwise. A key benefit of this approach is that it allows

us to quantify how a specific household’s estimated treatment effect varies by whether

or not they interacted with the App on an event day. This helps overcome the sample

selection challenge that would arise by running an analogous regression using all

households within a given demand response program. With such a regression, it would

not be possible to disentangle whether the different treatment effects arise because

the household interacted with the App on an event day or whether the households

that interact with the App are unique in the way they respond to events.

6 Empirical Results

This section presents the results of our demand response program-level econometric

analyses. In particular, we provide the average treatment effect of events for each

program, across all events and then separated by event type.

6.1 Program-Level Treatment Effects

Figure 3 provides the estimated average response to events by program as a percent-

age change in household-level consumption using the specification in Equation (8)

24Recall that households can use the App to monitor their hourly household consumption and
observe the timing and rewards for upcoming events 21 hours in advance. Households with installed
devices can also monitor their device-level consumption in the App. Tech households can adjust their
connected devices by pushing a button in the App (e.g., to turn off their use during events). Finally,
Central households can adjust their connected devices and opt out of centralized load management
during an event.
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including the full set of comparator households. We observe an average 26% reduc-

tion in consumption during events for the Central program. In contrast, the Tech and

Manual programs reduced demand by approximately 5% on average during events.

Both of these effects are significantly different from zero. Even though the Tech pro-

gram had the same equipment as the Central program, it demonstrated a significantly

lower response to events. Additionally, the average response for the Tech and Manual

program are not significantly different.

Figure 3. Average Estimated Treatment Effects of Participants by Program
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Notes: The reported results are program-specific marginal effects calculated from estimating β̂j in (8)
for j ∈ {C,M, T}. We present the marginal effects to be a percentage change in consumption using

the transformation 100 × (exp(β̂j) − 1). Vertical lines indicate 95% confidence intervals. Standard
errors are clustered at the household level.

Recall that the Central program has the ability to opt-out of events using the

App. We observe an opt-out rate of only 4% at the event-connected device level

from the participants in the Central program. When taken together with the results

for the Tech and Manual programs, this low opt-out rate suggests that the large

reductions for the Central program are primarily attributable to consumers allowing

utility management of their devices during events.25

These results align with the descriptive data presented in Section 4 that suggest

that households in the Tech program did not use the load controller equipment to

the same extent as the Central program. These results indicate that the installation

of technology in the Tech program that enables remote control of household devices

25Notably, when consumers opted out of central management, they generally did so for their
thermostats: 90% of device opt-outs occurred by households adjusting thermostats during events.
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is insufficient to resolve the time allocation/effort barrier that limits the provision

of demand flexibility (recall the model in Section 2). In contrast, centrally man-

aged demand response that flips the active versus passive response requirement, thus

requiring minimal-to-no effort, results in large demand reductions.

As described in Section 5.1, we undertake additional analyses to evaluate the

validity of our identification strategy. Appendix Table C1 provides the results of our

regression analysis when we vary the comparison group during non-event hours to

estimate the event treatment effects. These results demonstrate that our estimated

treatment effects are highly robust to varying the comparison groups included in the

regressions. Appendix Table C3 provides the results for our test of the validity of our

no carryover assumption. In this analysis, we find no evidence of changes in behaviour

during the event window on non-event days for any of our demand response programs.

6.2 Program-Level Treatment Effects by Event Type

In addition to randomized event timing, we also randomize event types, varying both

the time of the event and the financial reward for reductions. This allows us to

estimate how consumers respond to different price incentives and event times.

Figure 4. Average Treatment Effect of Participants by Program and Event Type
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Notes: The reported results are program- and event type-specific marginal effects calculated from
estimating β̂j in (8) for j ∈ {C,M, T}, adjusted to allow for event-type interactions with the program
indicator variables Di. We present the marginal effects to be a percentage change in consumption
using the transformation 100 × (exp(β̂j) − 1). Vertical lines indicate 95% confidence intervals.
Standard errors are clustered at the household level.

Figure 4 presents the estimated response to events allowing for differential re-

sponses by event type. For the Central program, we see a large demand reduction

for all event types, with an approximate 27% reduction during morning events, 25%
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during evening events, and a 27% average reduction during high evening events. This

indicates that the Central households allowed central management of demand during

both morning and evening times. It also indicates that they were not distinctly more

responsive to the greater incentives offered during the High Evening events.

During the Evening and High Evening events, the Tech program reduced its de-

mand by approximately 6%, while the Manual program had a 4% estimated reduction

in demand during these event types. These effects are statistically different from zero.

The Evening and High Evening Tech and Manual program effects are not significantly

different from each other, when compared within each event type.

The Tech program had a response to Morning events that are not statistically

different from zero. This differs (statistically significantly) from the Manual program,

which had an average estimated reduction of 8% during the Morning events. This is a

counter-intuitive result, as the Tech program had all the same information, incentives,

and abilities as the Manual program in making electricity consumption reductions

during events, with the added ability to remotely control thermostats, EV chargers,

and hot water heaters on which they have load controllers installed.

For all three programs, the change in consumption during High Evening events

does not statistically significantly differ from their responses to regular Evening

events. This suggests that the increased financial incentives does not motivate par-

ticipants to undertake additional effort to make greater reductions in usage. This

result suggests the barrier to demand responsiveness may have less to do with the

scale of financial rewards and more to do with the hurdle of the opportunity costs of

time/effort.26

Similar to the discussion in the previous section, Appendix Table C2 provides the

results of our regression analysis when we vary the comparison group used to estimate

event treatment effects. These results continue to demonstrate that our estimated

treatment effects are largely robust to varying the comparison groups included in

the regressions. The estimated response to morning events for the Tech and Manual

programs varies with the relevant comparison group, with a smaller response for the

Manual and a larger response for the Tech than our main specification. However, our

key conclusions persist. The Central program is considerably more responsive to all

26That said, participants were only eligible to receive $1 more for achieving a 30% reduction in
electricity use during a High Evening vs. Evening event. The reward for achieving a 50% reduction
was doubled ($6 vs. $3). It is possible that a larger scaling of incentives could induce a greater
response. However, given our rewards fall in the range of wholesale price caps observed in practice,
it is unlikely that incentives provided in a real-world setting would be considerably larger than the
amounts we provided.
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event types. Further, no program shows a distinct response to the elevated incentives

during the high evening events.

Finally, Appendix Table C4 provides the results for our test of the validity of

our no carryover assumption, allowing for differential estimates for the morning and

evening event windows. In this analysis, we find no evidence of changes in behavior

during either the morning or evening event windows on non-event days in the post-

treatment period for any of our demand response programs.

7 Time, Effort, and Attention

Our results have so far focused on average estimated treatment effects by demand

response programs. Overall, our main results are in line with the model presented

in Section 2. Central program participants, for whom the least time and effort was

required to respond to events, display the highest reductions in electricity usage during

events. Participants in the Tech and Manual programs reduced electricity much less

on average during events, with similar behavior across the two programs.

A natural and important economic question is: What drives these differences

across the three programs? In particular, what behavior underlies the differences

between the responses to events of the Central compared to the Tech programs? In

this section, we estimate household-level treatment effects and investigate the extent

to which there is heterogeneity in event responsiveness. We then look at potential

drivers of this heterogeneity. We use App interaction data during events to analyze

the extent to which time allocation/effort relates to the household-specific estimated

treatment effects. Additionally, we use survey data on household income and the

stated value of event participation to look at the relationship between the households’

opportunity cost of time and response to events.

7.1 Household-Level Treatment Effects

Figure 5 presents the distributions of household-level treatment effects by program,

estimated as per Equation (9). We observe that the Tech and Manual programs’

treatment effects are tightly distributed near zero. On average, households in the

Tech and Manual programs reduce their consumption during events by 4.6% and

4%, respectively. This corresponds closely to the estimated program-level treatment

effect in the previous section. Only 20% and 18% of the household-level estimated

treatment effects are negative and significant at the 5% level for the Tech and Manual
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programs, respectively.

Figure 5. Household-Level Estimated Treatment Effect Distributions by Program
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Notes. The reported results summarize the distribution of estimated household-level treatment
effects obtained from estimating specification (9). We present the marginal effects to be a percentage

change in consumption using the transformation 100× (exp(β̂i)− 1).

Despite the fact that the Tech program has enabling devices, the distribution of

their estimated treatment effects closely resembles that of the Manual households. In

both the Tech and Manual programs, we observe a long left tail, indicating that there

is a subset of households exhibiting large responsiveness. This is striking, as even

though the Tech and Manual programs have similar mean responses when looking

across all households, we might expect that the Tech program would contain a sub-

set of households with higher household-specific event responses given their ability

to remotely control their hot water heaters, EV chargers, and/or thermostats dur-

ing events. There is only modest evidence to support this; the Manual households’

estimated effects are more tightly distributed near zero.

Figure 5 also re-confirms the larger response from households in the Central pro-

gram. The average household-level treatment effect is a reduction of 24% during

events for households in the Central program, again closely reflecting the estimated

effects in the program-level regressions above. There is a broad range of household

estimates in the Central program, consistent with the fact that there is variation in
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controllable household devices. However, only the largest household estimates in the

Manual and Tech programs achieve reductions that are in the range that is typical in

Central. In contrast to these programs, 80% of the Central household-level estimated

treatment effects are negative and significant.27

Figure 6. Standard Errors of the Household-Level Estimated Treatment Effects by
Program
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Notes. The reported results plot the standard errors of the estimated household-level treatment
effects from specification (9).

Figure 6 plots the distribution of the standard errors of the estimated household-

level treatment effects. These results demonstrate that while the Central program has

a slightly lower standard error on average, the distributions are similar across all three

programs. The similarity in the precision of the estimates, combined with the average

treatment effects noted above, suggest that the Central households are consistently

large responders to events, while the Manual and Tech households are consistently

low responders.28 These findings provide important policy implications because they

27Appendix D.3 estimates household-level treatment effects by program and event type. We
continue to find no evidence of a larger response to the elevated incentives during high peak events.

28There are several large standard error estimates for the Manual program. This small subset
of households has an average consumption reduction of 8.4% during events, more than double the
average household treatment effect for the Manual program of approximately 4%. These large
standard errors suggest that these households are relatively inconsistently large responders to events.
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suggest that in addition to having larger estimated reductions in consumption dur-

ing events, the Central program provides a reliable source of demand-side flexibility.

Appendix D.4 provides additional empirical evidence demonstrating the consistency

in the responses to events by demand response program throughout our experiment.

7.2 App Interactions

Despite the lower average response to events for the Tech and Manual households,

Figure 5 demonstrates there is a small subset of high performers in the Tech and

Manual programs that have large negative estimated treatment effects. In this sec-

tion, we leverage App interaction data to evaluate if these high-performers differ in

their use of the App during events. While households could be aware of an upcom-

ing event without opening the App through push notifications sent to their phones,

App interactions are a strong indication that the household is aware of the demand

response event and serves as a proxy for time spent/effort to respond.29

The App data tell us when users are interacting with the App on a given day, as

well as more details on which features of the App they are accessing. For the Central

and Tech households, interacting with the App allows them to control connected

devices. For the Central program, the App can be used to opt out of automatic

load control before or during events. In all programs, the App allows the household

to observe the details of upcoming events 21 hours in advance, detailed information

about household consumption in real-time, and performance in previous events.

Figure 7 reports the average estimated household-specific treatment effects, allow-

ing for heterogenous treatment effects by whether or not the household interacted with

the App on a given day. For the Central program, the average estimated household-

level treatment effect is approximately -24% when the household does not interact

with the App, increasing in magnitude to -27% when they do interact with the App

during an event day. In contract, for the Manual and Tech programs, the average

household-level treatment effect is -3% when they do not interact with the App,

increasing in magnitude to roughly -8.5% when they interact with the App.

The results shown in Figure 7 provide two key findings. First, there is a positive

relationship between App interactions and demand reductions. Households who were

more attentive to the App on event days achieved higher reductions. This differential

effect is slightly larger for the Tech and Manual programs, where the change in demand

29In addition to actively opening the App on their phone, the App opens and logs an interaction
if a user clicks on the event push notification sent to their phone.
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Figure 7. Household-Level Average Treatment Effects by App Interaction
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Notes. The reported results are average household-level treatment effects by whether or not the
household interacted with the App on an event day. This represents the specification in equation
(9), adjusted to interact the event indicator (Eit) with an App Indicatorit variable that equals 1
when the household interacts with the App on the event day and zero otherwise. All specifications
include fixed effects at the year-month, day-of-week, and hourly levels.

reductions between interacting and not interacting with the App was approximately

5% as compared to about 3% for the Central program. Second, there is a massive

difference in the “no interaction” estimates between Central program participants and

those in the other programs (about -24% vs. -3%). This indicates that the Central

program received a roughly 21% “headstart” over the other programs by not having

to take action during the events to respond to them. This “headstart” is key to the

overall finding of greater demand response by the Central program participants.

As noted above, we also have detailed data on the types of pages/tabs the house-

holds interact with in the App (i.e., General Interactions, Energy Usage Dial, Devices

Tab, and Advisor Tab). This provides insight into the types of actions households may

have taken to respond to events. Table 3 summarizes the average daily App interac-

tion frequency for each demand response program separated by the performance quar-

tile. The performance quartiles are determined by ranking household-level treatment

effects over all demand response programs. This separates households into categories

of whether or not they are high or low-performing households during our experiment.

We summarize the count of the households and the percentage of households enrolled

in each demand response program that fall within a specific performance quartile.

30



Table 3. Average Daily App Interaction Frequency by Program and Performance Quartiles

Program Performance Household General Energy Usage Devices Advisor
Quartile Count Interactions Dial Tab Tab

Central 1 112 (63%) 0.32 0.30 0.18 0.26
2 42 (24%) 0.20 0.18 0.12 0.16
3 16 (9%) 0.20 0.19 0.14 0.15
4 7 (4%) 0.15 0.15 0.11 0.11

Tech 1 20 (11%) 0.54 0.49 0.32 0.42
2 45 (25%) 0.30 0.27 0.17 0.23
3 52 (28%) 0.23 0.22 0.11 0.17
4 67 (36%) 0.13 0.12 0.07 0.09

Manual 1 19 (8%) 0.60 0.59 0.06 0.50
2 64 (26%) 0.18 0.18 0.03 0.15
3 83 (34%) 0.15 0.15 0.03 0.12
4 76 (31%) 0.14 0.14 0.02 0.11

Notes. The reported results provide the daily frequency of App Interactions by program and perfor-
mance quartile. Performance quartiles are determined using the household-specific estimated treat-
ment effects obtained from estimating specification (9). Household Count represents the number
of households that fall within each performance quartile. The percentages report the percentage of
households within a program that falls within each quartile. General Interactions reflect any inter-
actions with the App. Energy Usage Dial displays the energy dial in the App that provides data on
real-time usage. The Devices Tab displays a household’s connected devices and allows households to
adjust the use of the installed devices. The Advisor Tab reports information on upcoming events and
historical performance on past events.

Table 3 demonstrates that the majority of Central households (63%) fall within

the top quartile of performance. In contrast, only 11% and 8% of Tech and Manual

households are in the top quartile. This is consistent with our results above that

the Central program has a significantly greater demand response than the Tech and

Manual programs, which show similar results.

Within each program, we see a reduction in the frequency of daily General In-

teractions as we move down the performance quartiles. This suggests that higher-

performing households are more attentive and/or spend more time to monitor and

react to events. In fact, across all columns, the frequency of App interactions in

the top quartile is significantly greater (at the 5% level) than the frequency in the

second-highest quartile.

We see a considerably higher frequency of App interactions among the Tech and

Manual households that achieve the top quartile of performance, interacting with the

App on 54% and 60% of days on average, respectively. In contrast, Central households
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in the top quartile only interact with the App on 32% of the days, suggesting that

achieving this high threshold of performance required less time and attention. The

top quartile of the Central program interacts significantly less with the App than the

top quartile of the Tech and Manual programs (at the 5% level). This is true for each

App interaction column in the table.

Looking across the App categories, households interacted with the Energy Usage

Dial the most, followed by the Advisor Tab. This suggests that when households

used the App, they often monitored their real-time consumption and the details of

upcoming events and/or their past performance in the Advisor Tab. The top quartile

performers in the Tech and Manual programs stand out in both of these categories,

with the frequency of their interactions with both the Energy Usage Dial and Advisor

Tab being roughly 2 to 4 times those of the bottom 3 quartiles.

Tech households in the highest-performing quartile interacted with the Devices

Tab in the App at a significantly higher frequency than all other households. This

suggests that a (small) subset of households in this program were using the installed

devices to achieve larger demand reductions. However, looking at the lower perfor-

mance quartiles in the Tech and Central programs, households in the Tech program

interacted with the Devices Tab about as much as those in the Central program.30

Overall, these results suggest that households in the Tech and Manual programs

had to allocate a higher degree of their time/effort to achieve relatively high demand

reductions and the associated rewards. In contrast, the Central program participants

had to invest less time in responding to events than others to generate the same scale

of demand reductions.

7.3 Opportunity Cost of Time Preferences

In this section, we use data collected from a survey at the end of our experiment (in

June 2023) to further understand the mechanisms driving our results. Specifically,

participants in our three demand response programs were asked questions to better

understand their opportunity costs of time. We correlate households’ responses to

these survey questions with their estimated household-level treatment effects, and

evaluate if these results are consistent with the economic incentives outlined in the

30In addition to the installed devices from our experiment, a subset of households had other
devices linked to the App. These were primarily smart plugs linked to lighting in the home. This
helps explain why we observe interactions with the Devices Tab for the Manual program. Only 3
Manual households installed and linked devices to the App during our experiment, all three were
thermostats for electric baseboard heaters.
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conceptual framework in Section 2.

We observe a high response rate to the survey, with 75%, 71%, and 69% of house-

holds in the Central, Tech, and Manual programs completing the survey. Respondents

were paid $20 upon completion of the survey. The results presented below focus only

on the households that completed the survey.31

There were two key survey questions to assess households’ opportunity costs of

time. First, we asked participants their annual household income level and gave them

several income categories (Less than $50k, $50-99k, $100-149k, $150-200k, and over

$200k). Second, we asked a stated-preference question to assess the extent to which

participants felt that participating in events was worth their time: “For the events you

noticed, how often was it worth your time to participate by attempting to reduce your

electricity consumption?” Respondents choose one of the following: (1) Never, (2)

Sometimes, (3) About half the time, (4) Most of the time, or (5) Always. Appendix

E.1 provides a more detailed summary of the exit survey.

Using the survey responses and household-level estimated treatment effects, we

estimate the following equation:

Yi = β0 + β1Ii + β2Zi + β3Gi + γXi + ϵi (10)

in which Yi is the estimated treatment effect for household i (see Section 7.1), Ii is a

household’s reported income, and Zi is the household’s response to the Worth Time

question described above. We include several control variables to control for a house-

hold’s appliances and allocation to different demand response programs. Gi is an

indicator variable for each demand response program and Xi is a vector of variables

controlling for whether the household has an electric hot water heater, a categori-

cal variable for whether a household has an electric vehicle and their corresponding

charger type (No, Level 1, Level 2), a categorical variable for air conditioning in the

home (No, Window Unit, Central Air), a categorical variable for electric baseboard

heating (No, 1 – 3 Units, 4 or more units), and a house/duplex dummy variable (1

for house/duplex, 0 for row home). We report results with heteroskedastic robust

standard errors.

The regression results are reported in Table 4. Focusing on the impact of household

31Appendix E.2 compares the characteristics of households that responded to the survey with
those that did not using pre-treatment data. While the households are similar on a number of
characteristics, responders consumed less electricity on average. To the extent that consumption
is correlated with factors that relate to the opportunity cost of time, this could downward weight
households with a higher opportunity cost of time in the end of experiment survey.
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Table 4. Household Treatment Effect on Worth Time and Income

Coefficient Std. Error P-Value

Worth Time
Sometimes -3.49 2.13 0.10
Half of the Time -6.30 2.39 0.01
Most of the Time -9.03 2.35 0.00
Always -15.05 2.86 0.00

Income
50 - 99k 5.53 4.56 0.23
100 - 149k 7.32 4.55 0.11
150 - 200k 9.89 4.55 0.03
>200 k 9.74 4.50 0.03

Program Indicators

Central -17.34 1.74 0.00
Tech -1.37 1.57 0.38

Controls

Electric Hot Water Heater -6.33 1.51 0.00

Electric Vehicle
Yes, Level 1 -1.07 2.48 0.67
Yes, Level 2 -3.65 2.12 0.09

Air Conditioning
Yes, Window Unit 1.69 1.74 0.33
Yes, Central Air 0.93 1.85 0.61

Baseboard Heating
Yes, 1 - 3 Units 3.01 2.23 0.18
Yes, 4 or more 1.75 1.76 0.32

Home/Duplex 3.70 2.25 0.10

Notes. The reported results present the estimates for Equation (10).

income, we see that higher income is associated with larger (positive) treatment

effects, or smaller electricity consumption reductions during events. The magnitude

of the coefficients are increasing in income, with less than $50,000 per year being

the excluded category. Coefficients for income brackets of $150,000 per year or more

are statistically different than the excluded lowest income bracket. These results are
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consistent with the framework in Section 2 that households with a higher opportunity

cost of allocating time (e.g., the wage rate in the model) will spend less time providing

demand flexibility (translating to a smaller estimated treatment effect).

For a given level of income, demand response program, and stock of household

appliances, households may have heterogeneous preferences in their willingness to al-

locate time to provide demand flexibility. Table 4 finds that all of the Worth Time

variable categories are negative and significantly different than the excluded “Never”

category (with “Sometimes” being marginally significant). Additionally, the coeffi-

cients are more negative as we move down the spectrum of the Worth Time measure.

These results suggest that the participants’ perceived net benefits of allocating time

to participate in events are correlated with greater reductions during events.

While these results focus on a stated-preference survey, they provide further sup-

port for the conceptual framework outlined in Section 2 to explain why we observe

large differences in responses to peak events across our demand response programs.

Factors that lead to a higher opportunity cost of time either financially or preference-

based are associated with lower estimated household-level treatment effects. The

Central demand response program, through the use of enabling technologies and

utility-controlled/automated default responses to events, is able to overcome these

time allocation and effort barriers.

8 Conclusion

The flexibility of electricity demand is becoming more valuable as electricity supply

evolves to include a growing share of variable renewable sources. Moreover, there is a

growing expectation that emerging technologies such as smart thermostats and elec-

tric vehicles will provide greater opportunities for flexible electricity demand. How-

ever, limited consumer responsiveness to dynamic electricity prices has long posed a

problem for flexible demand to be meaningful.

Suspecting that inattention to dynamic pricing is rational—that consumers’ re-

wards for paying attention to dynamic electricity prices and learning about how to

respond to them are not worth the associated costs—we run a large-scale field ex-

periment that tests the efficacy of utility-managed (“centralized”) electricity demand

on consumer responses to dynamic prices. Centralized demand management has the

potential to take the burden of actively responding to price signals off of consumers’

shoulders while allowing them (as well as other consumers and grid operators, in

35



critical conditions) to reap the rewards of adjusting the timing of consumption with

changing electricity system conditions.

We find that customers participating in a centralized demand management pro-

gram, the Central program, reduced consumption by 26% on average during critical

“peak events”. In contrast, participants in the Tech program, who had the same

smart technology as those in the Central program to remotely control baseboard

thermostats, hot water heaters, and electric vehicle chargers, but had to initiate re-

ductions themselves, only reduced consumption by 5% during events. This difference

indicates that centralized electricity demand management has large potential to help

consumers overcome barriers to respond to electricity prices. We find that the take-up

rates between the Central and Tech programs are not appreciably different, suggesting

that centralized electricity management is not as unpalatable as one might expect.

Somewhat surprisingly, we find that participants in the Tech program reduce con-

sumption during events no more than those in our Manual program, who do not

have smart, remote device adjustment capability. This indicates that smart home

energy technology was not sufficient on its own to induce demand flexibility; over-

coming the key barrier of effort/attention requires switching the default response, as

per the Central program. The key takeaway here is that to achieve its full potential,

technology needs to incorporate the behavioral realities of human effort and the op-

portunity costs of time as a barrier to responsiveness. Financial incentives motivate

consumers to take some action, but consumers still face barriers that a centralized

demand response program can resolve.

Interestingly, consumers in our context were not motivated to reduce consumption

more when rewards were increased during periodic “high peak events”. It is possible

that consumers would need more than what we offered them to overcome the barriers

that the Central program does. However, since our rewards were in line with peak

electricity system prices, larger offers would not likely be economically efficient.

We are able to estimate household-specific treatment effects to events, leveraging

our experimental design that has randomized household-specific event schedules. The

distributions of household treatment effects across programs reveal that households

in the Central program have a symmetrically distributed set of treatment effects,

with the central mass of effects less than zero. In contrast, the Tech and Manual

program participants display a distribution of household-level treatment effects that

are centered around zero with a long left tail. This suggests that “high achievers” in

these programs drove average treatment effects to events. Additionally, it suggests
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there is something about the Central program that facilitates the average household

to respond to events by reducing consumption.

To understand the mechanisms behind our results, we use evidence from data

on participant interaction with the experiment electricity management phone App.

Across all programs, App interaction is correlated with larger household-level treat-

ment effects. Average household-level treatment effects when households do not in-

teract with the App are about 3% for the Tech and Manual programs and 24% for

the Central program. When households do interact with their App, these numbers

increase to about 8.5% for the Tech and Manual programs, and 27% for the Central

program. This highlights the Central program’s “headstart”, whereby its participants

achieve consumption reduction even in the absence of App interaction. We find that

“high achievers” in the Tech and Manual programs, who drive the average consump-

tion reductions during events for these programs, interact with their App on 60%

and 54% of days on average during the experiment, whereas the high achievers in

the Central program interacted with the App on average significantly less (32% of

days on average). This suggests that high achievers in the Tech and Manual program

devoted a lot of attention to their electricity consumption and time/effort in reducing

it during events. Taken together, this evidence points to attention and effort (in the

form of app interaction) being an important component of responsiveness to events,

and that the Central program relieved participants of needing to devote such time to

electricity management to achieve large consumption reductions during events.

Given our results, we surmise that programs and policies that relieve consumers

of cognitive, time, and other burdens that contribute to rational inattention will have

large potential to lead to welfare improvements. In the case of residential electric-

ity, we see centralized demand as one such program, having the potential to both

save money for consumers and facilitate flexible demand to meet emerging needs of

electricity markets.
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A Conceptual Model Derivations

Using (1) - (3) and (5), (4) can be rewritten as:

p1X1 + p2X2 =

(
T −

3∑
i=1

ti

)
ω + ρZ3

⇒ p1 a1(R)Z1 + p2 a2(R)Z2 =

(
T −

3∑
i=1

bi(R)Zi

)
ω + ρZ3

⇒
3∑

i=1

πi(R)Zi = T ω (11)

where πi(R) are defined in (7).

(1) - (4), (7), and (11) implies that the utility maximization problem can be rewrit-

ten as (6) and (7), reflecting a standard utility maximization problem where πi(R)

represents the price of household good Zi. Consequently, the solution is achieved by

equating the marginal rate of substitution with the price ratio of any two household

goods.

To illustrate, suppose that the household’s preferences are represented by a Cobb-

Douglas utility function:

U(Z1, Z2, Z3) = Zα1
1 Zα2

2 Z1−α1−α2
3 (12)

where α1 and α2 are positive constants. Define λ to be the lagrangian multiplier on

the constraint. Using (6), (7), and (12), the solution to the household problem is

characterized by the following conditions:

α1 Z
α1−1
1 Zα2

2 Z1−α1−α2
3 = λπ1(R); (13)

α2 Z
α1
1 Zα2−1

2 Z1−α1−α2
3 = λπ2(R); and (14)

(1− α1 − α2)Z
α1
1 Zα2

2 Z−α1−α2
3 = λπ3(R) (15)

(13) and (15) imply:(
1

π1(R)

) [
α1 Z

α1−1
1 Zα2

2 Z1−α1−α2
3

]
=

(
1

π3(R)

) [
(1− α1 − α2)Z

α1
1 Zα2

2 Z−α1−α2
3

]
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⇒ π3(R)

π1(R)
=

(1− α1 − α2)Z
α1
1 Zα2

2 Z−α1−α2
3

α1 Z
α1−1
1 Zα2

2 Z1−α1−α2
3

⇒ Z1 =

(
α1

1− α1 − α2

)(
π3(R)

π1(R)

)
Z3 . (16)

(14) and (15) imply:(
1

π2(R)

) [
α2 Z

α1
1 Zα2−1

2 Z1−α1−α2
3

]
=

(
1

π3(R)

) [
(1− α1 − α2)Z

α1
1 Zα2

2 Z−α1−α2
3

]
⇒ π3(R)

π2(R)
=

(1− α1 − α2)Z
α1
1 Zα2

2 Z−α1−α2
3

α2 Z
α1
1 Zα2−1

2 Z1−α1−α2
3

⇒ Z2 =

(
α2

1− α1 − α2

)(
π3(R)

π2(R)

)
Z3. (17)

Using, (11), (16), and (17), we can solve for the utility-maximizing level of Z3

(demand flexibility):

π1(R)

(
α1

1− α1 − α2

)(
π3(R)

π1(R)

)
Z3+π2(R)

(
α2

1− α1 − α2

)(
π3(R)

π2(R)

)
Z3+π3(R)Z3 = T ω

⇒ π3(R)Z3

{(
α1

1− α1 − α2

)
+

(
α2

1− α1 − α2

)
+1

}
= T ω

⇒ π3(R)

1− α1 − α2

Z3

{
α1+α2+1−α1−α2

}
= T ω

⇒ Z3 =
(1− α1 − α2) T ω

π3(R)
. (18)

(7) and (18) imply that Z∗
3 varies with b3(R), ρ, and ω as follows:

∂Z∗
3

∂b3(R)
= − (1− α1 − α2) T ω2 (π3(R))−2 < 0;

∂Z∗
3

∂ρ
= (1− α1 − α2) T ω (π3(R))−2 > 0;

∂Z∗
3

∂ω
=

(1− α1 − α2) T π3(R)− (1− α1 − α2) T ω b3(R)

[π3(R)]2

s
= π3(R)− ω b3(R) = −ρ < 0. ■
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B Supplementary Experimental Framework Material

B.1 Recruitment and Assignment

The study sample was drawn from the population of residential customers in the Util-

ity’s service territory in and near a large metropolitan city in Canada. We employed

a two-step recruitment strategy. In Phase 1, starting in August 2021, the Utility

invited households to join an App operated by a third-party company in partnership

with the Utility. The App provides households with household-level hourly consump-

tion posted at a one-day lag. The App can be coupled with other devices to provide

more detailed information on real-time usage and device control. Households were

recruited to the App using several marketing strategies, including advertisements on

the Utility’s website, social media posts, the Utility’s newsletter, website notifica-

tions when users logged into their Utility accounts, and emails sent to approximately

306,000 residential households.

The recruitment onto the Utility’s App provided us with a pool of 9,020 households

to draw from. When households signed up to join the App, they were required to

answer a six-question survey. The survey asked households about their motivation for

joining the App and whether the household rents or owns their home. It asked about

devices eligible for load control in our experiment, including whether the household

has an electric hot water tank, an electric vehicle (EV), and electric baseboard heaters

as the primary heat source. Households with EVs were asked what type of charger

(level 1 or 2) they use. It also asked whether households have air conditioning, a

major source of demand flexibility.

We applied several selection criteria to this pool of households. Customers had

to be in or near a large metropolitan city in the province for which it was feasible

for Utility-partnered electricians to install load control equipment, as needed. Only

homeowners were permitted to participate. Condos and apartments were removed,

leaving primarily single-family homes, duplexes, and row homes as eligible. House-

holds must have at least one month of historical consumption data as of September

2021, and the customers must have at least one controllable electric device. Recall,

the set of controllable electric devices includes a level 2 electric vehicle charger, elec-

tric baseboard heaters used as the primary heat source, and an electric hot water

heater tank. This left us with a sample of 1,661 potential households that we used

for our randomized assignment to experimental programs.

In Phase 2 of recruitment, we randomized the eligible households into our treat-
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ment programs and never-treated groups.32 Starting in October 2021, we sent program-

specific emails to households inviting them to join a new “Trial” program. These

emails provided details about the specific experiences households would face in the

program to which they were being invited, including a summary of the expected re-

wards they could earn over the course of the Trial, equipment they would receive and

its estimated value, and future peak events. Households were also randomly offered

a small sign-on incentive of the amounts $10 or $20, or no incentive. All households

faced a yes/no decision regarding accepting our program-specific offer. The never-

treated Control group that received no equipment, price incentives, or real-time usage

information (recall Table 1) received no further communication beyond joining the

App in the first phase of recruitment.

Households had to accept the invitation to join the relevant experimental program

actively. After selecting to join, households were mailed a device called the “Hub”

that facilitates monitoring real-time energy usage via the App. Installers contacted

households in the Central and Tech programs to install the load controller equipment.

This two-phase recruitment process occurred over the months of August 2021 -

February 2022. The second phase of recruitment occurred in five waves starting in

October 2021. As additional households joined the App, we collected the survey

responses, identified eligible households, randomized households into programs, and

sent the second-phase recruitment emails. This process was used to facilitate the time

required to schedule and install the load controllers, as well as to achieve the targeted

sample size.

Finally, during the invitations to join each program, we randomized the upfront

incentive. While we find a higher rate of initial acceptance with higher upfront in-

centive payments, the differences are small and not significantly different.33

32Specifically, we used a randomization procedure designed to balance important observable char-
acteristics over programs and groups. We first used the machine learning algorithm “kmeans” to
group households based on observable characteristics. These included cumulative household electric-
ity consumption (in kWh) and load factor by season (Fall, Spring, Winter, and Summer), variables
that indicate if a household has an electric vehicle, electric baseboard heating, or air conditioning,
and census data on median household income. Load factor is the average electricity consumption
divided by maximum consumption over a specific time period; it is a way to capture the relative
utilization rate of consumption at the household level. We then randomized program assignments
so households within a cluster were balanced across programs.

33Households that received a $0, $10, and $20 upfront incentive accepted the initial invitation
with a 63%, 67%, and 68% probability, respectively.
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B.2 Comparison of Household Characteristics Upon Randomization

We evaluate if there are differences in pre-treatment characteristics across our various

programs to assess the quality of our randomization. Table A1 provides summary

statistics by program for a number of variables, including those used in the clustering

procedure during randomization (recall the discussion in Footnote 32). The sample

presented in this Table represents all 1,661 households invited to participate in the

experiment. For all variables, we report the p-values from a one-way ANOVA test to

evaluate if there are statistical differences in means across the programs.34

Table A1 shows that we do not find significant differences in key characteristics

pre-treatment across our programs. These results indicate that our randomization

approach effectively achieved balance on observables pre-treatment. In addition, Ta-

ble A1 demonstrates that the majority of households in our sample have electric hot

water heating and use baseboard heating as the primary heat source. In contrast,

electric vehicles are less common, representing approximately 30% of households. The

majority of households are single-family homes or duplexes, with the remainder being

primarily row homes. The households consume considerably more electricity during

the winter, with the lowest consumption arising in summer. This demonstrates the

potential for larger opportunities for load shifting during these months.

B.3 Comparison of Household Characteristics After Acceptance

We compare the pre-treatment means in observable characteristics by program, in-

cluding only the households that accepted our invitation to join each program. Large

differences in observable characteristics would raise questions about the comparability

of our estimated treatment effects from the main specifications.

Table A2 shows observables across programs for the final set of households in-

cluded in each program. We observe limited differences in these characteristics across

programs. The exceptions are that we find a statistically significant difference in the

proportion of households that live in single-family homes/duplexes. There is a larger

proportion of households in this building type in the Manual program than in other

programs, in particular. We also observe a difference across programs in the propor-

tion of households that have EVs, but this difference is only marginally statistically

34The seasonal cumulative consumption and load factor data only contain households with a full
year’s worth of historical consumption. We computed analogous statistics for the entire sample of
households using only data from September 2021, the month in which all households have complete
pre-treatment consumption data. We find no evidence of statistically significant differences in means
across the programs using this data.
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Table A1. Comparison of Means by Programs - Initial Randomization

Central Tech Manual Info Control ANOVA (p-value)
Cumul. kWh

Winter 5,279 5,268 5,442 4,859 5,265 0.27
(2,694) (3,032) (3,076) (2,748) (2,950)

Spring 3,760 3,773 3,818 3,503 3,712 0.48
(1,924) (2,112) (1,911) (2,116) (1,974)

Summer 2,845 2,836 2,708 2,614 2,729 0.54
(1,742) (1,872) (1,539) (1,861) (1,710)

Fall 3,633 3,670 3,700 3,458 3,623 0.66
(1,663) (1,945) (1,974) (1,796) (1,860)

Load Factor
Winter 24.66 24.98 25.41 24.73 24.67 0.81

(8.20) (8.15) (8.80) (8.29) (8.63)
Spring 19.52 20.12 20.01 19.28 19.91 0.65

(7.25) (6.97) (6.70) (7.73) (7.41)
Summer 16.82 16.55 16.73 16.12 16.32 0.82

(7.89) (6.30) (5.93) (8.11) (8.29)
Fall 18.56 18.90 19.34 18.42 19.06 0.42

(5.89) (6.23) (6.00) (6.48) (6.50)
Electric Vehicle 0.27 0.27 0.27 0.33 0.27 0.41

(0.44) (0.45) (0.45) (0.47) (0.45)
Baseboard Heating 0.61 0.64 0.61 0.63 0.63 0.95

(0.49) (0.48) (0.49) (0.48) (0.48)
Air Conditioning 0.52 0.51 0.50 0.51 0.54 0.95

(0.50) (0.50) (0.50) (0.50) (0.50)
Electric Hot Water 0.70 0.66 0.70 0.66 0.72 0.38

(0.46) (0.47) (0.46) (0.47) (0.45)
House/Duplex 0.77 0.76 0.81 0.78 0.84 0.17

(0.42) (0.43) (0.39) (0.42) (0.37)
Median Income 86,376 88,291 85,931 87,470 85,948 0.48

(19,503) (22,227) (19,255) (21,574) (21,541)
Households 423 382 409 259 188

Notes. This table compares pre-treatment average values across the five different programs.
Parentheses contain the standard deviations. Cumul. kWh and Load Factor represent the
cumulative household-level consumption and load factor by season. The seasonal cumulative
consumption and load factor data only contain households with a full year’s worth of historical
consumption. Electric Vehicle, Baseboard Heating, Air Conditioning, and Electric Hot Water
are indicator variables denoting the presence of each device. House/Duplex is an indicator
variable that equals one if the home type is a single-family home or duplex and zero otherwise.
Median Income reports the median household-level income of the Census Dissemination Area
where the household is located. ANOVA reports the p-value from one-way ANOVA tests for
differences in means across programs. Statistical significance: * p < 0.10, ** p < 0.05, and
*** p < 0.01.

significant. Overall, these results suggest that the balance on observables that arose

due to the initial randomization largely remains in the final sample.
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Table A2. Comparison of Means by Program - Final Accepted Households

Central Tech Manual Info Control ANOVA (p-value)
Cumul. kWh

Winter 5,507 5,302 5,422 5,037 5,265 0.71
(2,706) (2,737) (3,240) (2,768) (2,950)

Spring 3,900 3,739 3,797 3,642 3,712 0.85
(1,934) (1,791) (1,939) (2,159) (1,974)

Summer 2,851 2,672 2,766 2,702 2,729 0.93
(1,869) (1,759) (1,547) (1,849) (1,710)

Fall 3,754 3,550 3,677 3,547 3,623 0.86
(1,733) (1,659) (1,992) (1,788) (1,860)

Load Factor
Winter 24.62 25.56 24.93 24.93 24.67 0.90

(8.68) (8.21) (9.04) (7.76) (8.63)
Spring 19.33 20.48 19.80 19.59 19.91 0.72

(7.43) (6.30) (6.45) (7.05) (7.41)
Summer 16.33 16.87 16.95 16.61 16.32 0.91

(8.54) (6.02) (5.95) (7.80) (8.29)
Fall 18.17 18.97 19.11 18.53 19.06 0.65

(6.27) (5.78) (6.29) (6.11) (6.50)
Electric Vehicle 0.25 0.21 0.30 0.34 0.27 0.07∗

(0.43) (0.41) (0.46) (0.47) (0.45)
Baseboard Heating 0.68 0.70 0.60 0.59 0.63 0.12

(0.47) (0.46) (0.49) (0.49) (0.48)
Air Conditioning 0.46 0.46 0.51 0.51 0.54 0.41

(0.50) (0.50) (0.50) (0.50) (0.50)
Electric Hot Water 0.75 0.74 0.68 0.65 0.72 0.16

(0.43) (0.44) (0.47) (0.48) (0.45)
House/Duplex 0.82 0.77 0.89 0.84 0.84 0.02∗∗

(0.39) (0.42) (0.32) (0.37) (0.37)
Median Income 84,978 88,274 86,718 89,504 85,948 0.23

(19,647) (20,432) (19,494) (21,079) (21,541)
Households 177 184 242 177 188

Notes. This table compares pre-treatment average values across the five different programs
for households that were in our final programs. Parentheses contain the standard deviations.
Cumul. kWh and Load Factor represents the cumulative household-level consumption and
load factor by season. Electric Vehicle, Baseboard Heating, Air Conditioning, and Electric
Hot Water are indicator variables denoting the presence of each device. House/Duplex is a
indicator variable if the home type is a single-family home or duplex. Median Income reports
the median household-level income of the Census Dissemination Area where the household
is located. ANOVA reports the p-value from one-way ANOVA tests for differences in means
across programs. Statistical Significance * p < 0.10, ** p < 0.05, and *** p < 0.01.
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C Treatment Details

C.1 Program-Specific Event Notifications

Each treatment program experienced event notifications tailored to their treatment.

Each program received a notification 21 and 2 hours before an event. All participants

were shown a short notification according to their device and in-app notification set-

tings. If participants touched and pressed the notification, they were shown the long

notification specific to their program, featured below, with event incentive details.

Figure B1. Long Notification for Central program

Figure B2. Long Notification for Tech program
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Figure B3. Long Notification for Manual program
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Note that all program participants in the three programs were able to locate event

details in the “Advisor” tab of the App, a centralized location for information from

the App company, once they received an event notification. The “Learn More” button

at the bottom right of this information card took participants to the “FAQs” section

of the program-specific experiment website.

Figure B4. Event info in App

C.2 Treatment Program-Specific App Functionality

Each program in our experiment had an App experience and functionality that dif-

fered according to their program assignment. We detail that here and walk through

how participants in each program could have responded to peak events, given the

options in the App.
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C.2.1 Central Program

The Central program participants receive 21-hr and 2-hr notifications regarding up-

coming events, as described in Appendix C.1. These notifications allow them to see

the timing of the event and the magnitude of rewards for electricity consumption

reductions. They also remind participants that their devices with load controllers

would be altered by the Utility to reduce consumption, unless they opted-out of the

event.

There are several ways that Central program participants can opt-out of events.

Before an event starts, they can push an “Opt-out” button in the “My Devices” tab

of the App (Figure B5). (This tab is a central App location that allows App users to

remotely control devices that have load controllers and see the individual electricity

consumption of those devices.) This button removes the participant from the event

globally by removing all of their load-controlled devices from the event.

If they do not opt-out in this way, they see a series of screens in the “My Devices”

tab. These indicate the progression of the event to the participant and signal when

their devices’ electricity consumption is being controlled by the utility, via the icons

above the text “You are opted in”, “Event”, and “Complete” (Figure B6).

During an event, participants can cancel Utility device control in a device-specific

way. For EV chargers and hot water heaters, they can remotely opt-out their device

from being controlled, or they can physically turn off the load controller at the device

itself. For thermostats, participants can opt-out of load control by adjusting them

physically or remotely through the App, during an event.

Note that the Central program has remote and manual control of all devices

with load controllers, just like the Tech program. Central program households can

also change anything else in the house to alter their electricity consumption during

events.
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Figure B5. Central Program Opt-Out Functionality
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Figure B6. Central Program Event Experience
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C.2.2 Tech Program

The Tech program participants receive 21-hr and 2-hr notifications regarding up-

coming events, as described in Appendix C.1. These notifications allow them to see

the timing of the event and the magnitude of rewards for electricity consumption

reductions. They also remind participants that they need to “take action” to make

consumption changes to receive the rewards offered.

The Tech program can remotely control any device that has an installed load

controller through the App. For EV chargers and hot water heaters, they can turn

them off via two clicks from the My Devices section of the App. (See Figure B7 below

for the instructions sent to participants that explain these actions.) Tech program

participants cannot make a schedule to turn off these devices before events start and

must turn them off before or during events to reduce consumption this way. (They

must also remember to turn them on unless they set up a turn-on schedule.)

Figure B7. Controller Guide for Tech Program

For thermostats, the Tech program can set up schedule for their thermostat set-
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point before events, using the App. They can also adjust their thermostats remotely

during events with the App.

C.2.3 Manual Program

The Manual program participants receive 21-hr and 2-hr notifications regarding up-

coming events, as described in Appendix C.1. These notifications allow them to see

the timing of the event and the magnitude of rewards for electricity consumption

reductions. They also remind participants that they need to “take action” to make

consumption changes to receive the rewards offered.

Manual program participants do not load controllers given to them as part of

this experiment or Utility control of any devices. They therefore only observe these

notifications as well their aggregate, real-time household consumption through the

App. If Manual program participants install their own smart home devices, they

may be able to link them to the smart electricity consumption technology ecosystem

used in this experiment. If so, they may have the capabilities of the Tech program to

observe the real-time consumption of those devices/devices individually and adjust

them remotely through the App. (Only three households in the Manual program

installed their own smart thermostats over our sample period.)

C.2.4 Central, Tech, and Manual Programs

After each event, all three of the Central, Tech, and Manual programs receive a result

on their performance, as depicted below. This appears in the “Advisor” tab of the

App, a central location for information from the App company. This result card

reminds participants of the event type (reward magnitudes being “high” or not) and

the day and time of the event. It shows the incremental reward the participant earned

from the event as well as their cumulative rewards throughout the entire experiment,

including the reward from the prior event. The text below the reward for the last

event is variable and depends on whether a participant met one of the reward tiers.

The rewards screen with one of these text options is shown below in Figure B8.

From this rewards screen, participants can select “Event History” and see their

recent history of event rewards, as shown in Figure B9.35

35Figure B9 was created for illustrative purposes using a series of simulated events. As a result,
the event times differ from the event times considered in our study (i.e., 7:00 AM - 10:00 AM and
5:00 PM - 8:00 PM).
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Figure B8. Rewards Screen
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Figure B9. Event History
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D Extensions and Robustness

D.1 Comparison Group in Program-Level Regression

In our main specification in Equation (8), our analysis includes all three demand

response groups and never-treated households. As discussed in Section 5.1, this ap-

proach compares event time consumption to non-event time consumption of house-

holds in the same demand response program, other demand response programs, and

never-treated households. Tables C1 and C2 present our estimated treatment effects

of participants by program to events and separated by event type, respectively, allow-

ing for regressions only including households in the same demand response program

(Column (1)), same demand response program and the never-treated (Column (2)),

and the results from our main specification in Column (3) for comparison purposes.

Our results are consistent across all three specifications.

Table C1. Treatment Effects of Participants by Program

Program (1) (2) (3)
Central -0.3151∗∗∗ -0.3007∗∗∗ -0.3047∗∗∗

(0.0206) (0.0204) (0.0204)
Tech -0.0661∗∗∗ -0.0475∗∗∗ -0.0495∗∗∗

(0.0132) (0.0155) (0.0159)
Manual -0.0507∗∗∗ -0.0459∗∗∗ -0.0540∗∗∗

(0.0092) (0.0117) (0.0122)
Comparisons
Own Program Y Y Y
Other Treated Y
Never Treated Y Y

Notes. The reported results are program-specific treatment effect coefficients.
Standard errors are reported in the parentheses and clustered at the household
level. Column (1) reports the regression results including only within demand
response program comparisons, column (2) includes both within demand re-
sponse program and the never-treated (Info and Control) groups, and column
(3) reports results when all programs/groups are included. All specifications
include fixed effects at the household and hour-of-sample levels. Statistical
Significance * p < 0.10, ** p < 0.05, and *** p < 0.01.
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Table C2. Treatment Effects of Participants by Program and Event-
Type

Program (1) (2) (3)
Central
Morning -0.3198∗∗∗ -0.3160∗∗∗ -0.3133∗∗∗

(0.0221) (0.0224) (0.0223)
Evening -0.3040∗∗∗ -0.2850∗∗∗ -0.2916∗∗∗

(0.0218) (0.0226) (0.0227)
High Evening -0.3291∗∗∗ -0.3105∗∗∗ -0.3177∗∗∗

(0.0237) (0.0241) (0.0243)
Tech
Morning -0.0495∗∗∗ -0.0273 -0.0158

(0.0128) (0.0188) (0.0199)
Evening -0.0713∗∗∗ -0.0545∗∗∗ -0.0623∗∗∗

(0.0155) (0.0181) (0.0185)
High Evening -0.0786∗∗∗ -0.0604∗∗∗ -0.0675∗∗∗

(0.0166) (0.0199) (0.0205)
Manual
Morning -0.0488∗∗∗ -0.0689∗∗∗ -0.0812∗∗∗

(0.0097) (0.0150) (0.0159)
Evening -0.0488∗∗∗ -0.0332∗∗ -0.0396∗∗∗

(0.0108) (0.0143) (0.0149)
High Evening -0.0567∗∗∗ -0.0403∗∗ -0.0467∗∗∗

(0.0126) (0.0159) (0.0166)
Comparisons
Own Program Y Y Y
Other Treated Y
Never Treated Y Y

Notes. The reported results are program-specific treatment effect coefficients
by event type. Standard errors are reported in the parentheses and clustered
at the household level. Column (1) reports the regression results including
only within demand response program comparisons, column (2) includes both
within demand response program and the never-treated (Info and Control)
groups, and column (3) reports results when all programs/groups are included.
Each regression is adjusted to include an event-type-specific categorical vari-
able. All specifications include fixed effects at the household and hour-of-
sample levels. Statistical Significance * p < 0.10, ** p < 0.05, and *** p < 0.01.
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D.2 No Carryover Assumption

As discussed in Section 5.1, an assumption in our identification strategy is that our

randomized events do not impact (or “carryover” to have a treatment effect on) per-

sistent changes in behavior in the event hours on non-event days. We test the validity

of this assumption by estimating a DID regression. Separately for each demand

response program, we run the following regression that excludes event days in the

post-treatment period and includes the never-treated households:

ln(cit) = β Di · EventWindowit + αi + τt + δXit + εit (19)

where EventWindowit equals 1 in the post-treatment period for hours where morn-

ing or evening events occur and 0 otherwise. Di equals 1 if the household is in a

demand-response group (i.e., C, T , or M) and 0 otherwise. All other features of the

regression analysis are identical to those in Equation (8). This analysis evaluates

whether households in each demand response program adjusted their consumption

during the event windows on non-event days in the post-treatment period, relative

to the never-treated households. If households treated with events did not systemat-

ically alter their behavior on non-event days in response to being exposed to events,

β should be statistically indistinguishable from zero. In addition, we consider a spec-

ification that estimates separate effects for the morning and evening event windows

on non-event days.

Table C3 presents the results of our no carryover assumption DID test, described in

Section 5.1. Table C4 presents the results when we allow for differential effects across

the morning and evening event windows on non-event days. In both specifications, we

find no evidence of changes to non-event day consumption during the event windows.

Table C3. Carry Over DID Estimates by Program

Central Tech Manual
Event Window 0.0241 0.0302 -0.0014

(0.0169) (0.0181) (0.0155)

Notes. The reported results are the program-specific Event Window co-
efficients from equation (19). For each demand response program, the
sample includes households from their own treatment program and the
never-treated groups. Standard errors are reported in the parentheses
and clustered at the household level. All specifications include fixed ef-
fects at the household and hour-of-sample levels. Statistical Significance
* p < 0.10, ** p < 0.05, and *** p < 0.01.
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Table C4. Carry Over DID Estimates by Program and Event Type

Central Tech Manual
Morning Event Window 0.0188 0.0353 -0.0226

(0.0206) (0.0235) (0.0201)
Evening Event Window 0.0295 0.0251 0.0196

(0.0212) (0.0210) (0.0185)

Notes. The reported results are the program-specific Event Window co-
efficients from equation (19), allowing for differential effects during the
morning and evening event windows. For each demand response program,
the sample includes households from their own treatment program and
the never-treated groups. Standard errors are reported in the parenthe-
ses and clustered at the household level. All specifications include fixed
effects at the household and hour-of-sample levels. Statistical Significance
* p < 0.10, ** p < 0.05, and *** p < 0.01.

D.3 Household Treatment Effects by Event Type

Figure B10 presents the distributions of our household-level treatment effects by pro-

gram and event type. More specifically, we estimate the specification detailed in (9)

but permit different treatment effects by event type: morning, evening, and high

evening.

For the Central program, looking across all households, the average percentage

reduction in consumption ranges from 23% during morning events to 24% in evening

and high evening events. For Tech, this ranges from 1% during morning events

to 5% during evening and high evening events. Finally, for Manual, the average

reduction is 3% during morning events and 4% during evening and high evenings.

While the precise values vary slightly, the average household-level treatment effects

are in a similar range to those found in the program-level regressions summarized in

Section 6.2. Importantly, we do not find any evidence of a larger average reduction

in consumption during high peak evening events compared to evening events.

A benefit of estimating household-level treatments effects is that we can observe

the full distributions for evening and high evening events. Figure B10 shows that

the Central program’s distributions are quite similar by event type. For the Tech

and Manual programs, there is some evidence to suggest that the response to evening

events are more tightly distributed around zero compared to the high evening events.

However, this does not translate into differences in average treatment effects when

looking across all households, as documented above.
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Figure B10. Household-Level Estimated Treatment Effect Distributions by Program
and Event-Type
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Notes: The reported results summarize the distribution of estimated household-level treatment
effects obtained from estimating specification (9), permitting different treatment effects by event
type: morning, evening, and high evening. We present the marginal effects to be a percentage
change in consumption using the transformation 100× (exp(β̂i)− 1).
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D.4 Consistency of Demand Response

In this section, we expand upon the household-level results to investigate the consis-

tency of responses to events by program. This builds off of the discussion in Section

7.1 and Figure 6 in particular.

Figure B11. Household-Level Estimated Treatment Effects and T-Statistics by Pro-
gram
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Notes. The reported results plot the estimated household-level treatment effects and corresponding
t-statistic obtained from estimating specification (9). We present the marginal effects to be a per-

centage change in consumption using the transformation 100× (exp(β̂i)− 1).

Figure B11 plots the estimated household event responses and the corresponding

t-statistics to better understand the significance of the estimates. The majority of

the Manual and Tech values are closely distributed near zero in both the estimated

event response and t-statistics. Only 20% and 18% of the household-level estimated

treatment effects are negative and significant at the 5% level for the Tech and Manual

programs, respectively.36 This suggests that only a small subset of high-performing

households in these programs were consistent responders to peak events over our 17-

36There is a small subset of households with positive estimated treatment effects. These estimated
effects are systematically statistically insignificant, with only 3% being positive and statistically
significant.

63



month treatment period. Figure B11 reinforces our finding that the Central program

has large and precisely estimated responses to peak events. 80% of the Central

household-level estimated treatment effects are negative and significant, indicating

that the majority of Central households provide large and consistent reductions in

consumption during peak events.

In addition to having estimates for household-level treatment effects, we observe

each household’s consumption relative to their baseline for each event. As described in

Section 3.2, the baselines were calculated based on a household’s average consumption

during the relevant event time window over the last five weekdays prior to the event,

excluding event days. For each household, we calculate the proportion of events where

their observed percentage reduction in consumption relative to their baseline was

greater than 0%, 10%, 20%, and 30%. It is important to recognize that this measure

will have some noise. This is particularly relevant for the comparison of consumption

relative to the baseline being greater than 0%. Even if a household did not adjust its

behavior to respond to the event, natural variation would induce consumption to fall

below the baseline for a certain proportion of events. If this randomness is normally

distributed around the baseline, the proportion would be 50%. While this makes

interpreting the results for this measure more nuanced, as we will describe below, it

is still valuable because we can compare the relative performance across programs.

Figure B12 presents, at the household-level, the proportion of events where the

observed percentage reduction in consumption relative to the baseline was greater

than 0%, 10%, 20%, and 30% by program. Focusing initially on the results for

greater than 0% threshold, the Tech and Manual groups have similar distributions

and are slightly rightward shifted above 50%. As noted above, noise in this measure

could result in values near 50% being viewed as having a minimal reduction relative

to the baseline for the greater than 0% threshold. The fact that the Tech and Manual

programs have distributions situated just to the right of 50%, with a small subset of

households exceeding 70%, is consistent with our household-level regression results.

In contrast, the majority of Central households have proportions in excess of 70% of

event days being greater than 0%. This continues to suggest that Central households

consistently reduce their consumption during events.

Figure B12 shows that as the threshold increases to greater than 10%, 20%, and

30% reductions relative to the baseline, the proportion of events where households

achieve reductions above this threshold declines across all programs. However, the

proportion of events where Tech and Manual achieve reductions above this threshold
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Figure B12. Household-Level Proportion of Responses with Reductions Relative to
Baseline Greater Than 0%, 10%, 20%, and 30%
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Notes: Figure plots at the household-level the proportion of events where their observed percentage
reduction in consumption relative to their baseline was greater than 0%, 10%, 20%, and 30% by
program over the period February 1, 2022 - June 30, 2023.

declines at a much faster rate than Central. For example, the majority of Central

households achieve reductions greater than 20% in at least 50% of events. In contrast,

this number is in the range of 20% - 30% of events for the majority of Tech and Manual

households, with a small subset of higher performers who consistently reduce their

consumption above this threshold in the majority of events.

Taken together, these results suggest that the Central program was able to achieve

a high and consistent demand reductions for the majority of events over the 17-months

they were exposed to peak events. This differs from the Tech and Manual programs

that achieved more modest demand reductions for a smaller proportion of events.
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E End of Experiment Survey

E.1 Survey Details

The following is text from a voluntary, end-of-experiment survey sent out to partici-

pants in the Central, Tech, and Manual programs via email, in mid-June, 2023.

Survey instructions :

“This short survey is designed to hear about your experience in the Peak Rewards

Trial through [APP NAME]. All homes had a different experience, and we want to

hear about yours.

We appreciate the time and thought you put into this survey.

Properly completed surveys will be rewarded with $20 on bill credit as a token of

our gratitude.”

Survey questions used in our analysis:

“What is your approximate household income?

• Less than $50k per year

• $50-99k per year

• $100-149k per year

• $150-200k per year

• Over $200k per year

• Don’t know/Rather not say”

“For the events you noticed, how often was it worth your time to participate by

attempting to reduce your electricity consumption?”

• Never

• Sometimes

• About half the time

• Most of the time

• Always

• Don’t know/Not Applicable”

66



E.2 Survey Response

In this section, we compare the observable characteristics of participants who

filled out the end-of-experiment survey to those who did not. The Table below

recreates our balance Table A2 (using pre-treatment data), but separates the

results by whether or not the household responded to the exit survey. The

p-value corresponds to a difference in means test.

Table C5 demonstrates that the non-respondents had larger cumulative con-

sumption during the pre-treatment period. Non-respondents also were more

likely to have an electric vehicle. All other characteristics are similar across the

two groups.
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Table C5. Balance by Exit Survey Response (Pre-Treatment Data)

Yes No p-value

Cumul. kWh
Winter 5,229 5,892 0.04∗∗

(2,810) (3,199)
Spring 3,675 4,167 0.02∗∗

(1,788) (2,104)
Summer 2,614 3,155 0.01∗∗∗

(1,492) (2,142)
Fall 3,528 4,012 0.02∗∗

(1,721) (2,016)
Load Factor
Winter 24.96 25.21 0.78

(8.61) (8.89)
Spring 19.82 19.98 0.83

(6.64) (6.93)
Summer 16.56 17.21 0.37

(6.87) (6.76)
Fall 18.66 19.12 0.51

(5.91) (6.72)
Electric Vehicle 0.24 0.32 0.05∗∗

(0.42) (0.47)
BaseBoard Heating 0.66 0.64 0.71

(0.47) (0.48)
Air Conditioning 0.47 0.51 0.32

(0.50) (0.50)
Electric Hot Water 0.72 0.70 0.56

(0.45) (0.46)
House Duplex 0.83 0.82 0.71

(0.37) (0.38)
Median Income 86,377 87,434 0.55

(19,853) (19,835)

Observations 429 174

Notes. This table compares pre-treatment average values by whether or not
the household participated in the exit survey. Parentheses contain the stan-
dard deviations. Cumul. kWh and Load Factor represents the cumulative
household-level consumption and load factor by season. Electric Vehicle,
Baseboard Heating, Air Conditioning, and Electric Hot Water are indica-
tor variables denoting the presence of each device. House/Duplex is a indi-
cator variable if the home type is a single-family home or duplex. Median
Income reports the median household-level income of the Census Dissemina-
tion Area where the household is located. p-value from a difference in means
test across the two groups. Statistical Significance * p < 0.10, ** p < 0.05, and
*** p < 0.01.
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